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ABSTRACT 
Fault trees and event trees have for decades been the most commonly applied modelling tools in both 
risk analysis in general and the risk analysis of hydrogen applications including infrastructure in 
particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses 
sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic 
modelling. 

Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that 
explicitly reveal the probabilistic dependence between the variables and the related information flow.  
It has been suggested that BN represent a modelling tool that is superior to both fault trees and event 
trees with respect to the structuring and modelling of large complex systems.  This paper gives an 
introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability 
of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. 

In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study 
takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted 
by DNV during the HyApproval project.  We compare and discuss the two analyses with respect to 
their advantages and disadvantages.  We especially focus on a comparison of transparency and the 
results that may be extracted from the two alternative procedures. 

1.0 INTRODUCTION 

This paper gives a short introduction to Bayesian Networks1 (BN) and utilises a case study as a basis 
for discussing and demonstrating the suitability of BN for modelling the risks associated with the 
introduction of hydrogen as an energy carrier. 

The first phase of a risk analysis will typically be a coarse risk analysis which is conducted in order to 
better understand the problem.  The coarse risk analysis represents a risk screening.  A subsequent 
phase may extend the coarse risk analysis to a detailed risk analysis that focuses much more on 
                                                      

 

 

1 Bayesian Networks are also known as Bayesian Belief Networks, Causal Probabilistic Networks, Causal Nets, 
Graphical Probability Networks, Probabilistic Cause-Effect Models, and Probabilistic Influence Diagrams 
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modelling the system interaction.  System interaction is only to a limited extent included in the coarse 
risk analysis. In a detailed risk analysis, it is possible to take into account system effects and to 
combine various risks. Different tools are available for conducting a detailed risk analysis, e.g. 
Bayesian networks may be used to model the entire system within a probabilistic model universe.   

When performing a coarse risk analysis it can be useful to calculate the yearly risk )(Ar  associated 
with the event A  as: 

 [ ] cbarrierPAr ⋅⋅= λ)(  

In which λ  represents the frequency of occurrence of the initiating event; [ ]barrierP  defines the 
probability of failure of the set of safety barriers that have been implemented to prevent the occurrence 
of the unwanted consequences, c . For instance, the unwanted event may be a hose rupture that might 
lead to a gas leak and subsequently to both material and human losses.  A series of barriers are present, 
all of which must fail to let the leak become a “large” fire and for the consequences to materialize. For 
example a pressure sensor may be present, which must fail in sensing the pressure drop or in activating 
the shutdown to limit the leak; the leak must be ignited, and the staff must fail to detect the leak and 
fire in time. The probability of failure is estimated for each of these barriers. If it is assumed that all 
these individual barriers are independent, then the joint failure probability of the barriers, [ ]barrierP , 
becomes equal to the product of the individual barriers. Note that it is not always possible to assume 
that the barriers are independent. In these situations it is necessary to carefully take the correlation of 
failure into account. This approach is known as the barrier model or “Swiss Cheese model”, Reason 
(1997).  

To perform a structured risk analysis, it is important to define the set of consequences that should be 
included and to group, compare and balance these with each other. For instance, consequences may be 
grouped into categories involving loss types such as human life, assets, the environment and monetary 
losses. These categories are subdivided into coarse classes (negligible, minor, etc.) to reflect the 
severity of the events. The balancing implies that different loss categories belonging to the same class 
are comparable and hence equally critical. Although this fact may seem very simple, it is frequently 
forgotten in risk analysis. The loss assessment may involve tangible (e.g. direct economic losses, lost 
production, indemnification due to pollution) and intangible losses (e.g. loss of reputation, harm to 
nature and quality of life).   

The objective of the risk analysis is to estimate the total expected loss resulting from the activity and 
to identify those elements or areas in the system that contribute the most to the total loss. When these 
loss critical elements are identified, it should be considered how the risk contribution from these may 
be reduced.  The identified risk control measures may either have an effect on reducing the frequency 
of occurrence (either directly or through the barriers) or reduce the consequences – in some cases both 
are reduced. One objective of the risk analysis is to support the owner’s decision-making by 
establishing the most efficient risk-reducing initiatives. The balancing of the consequences is therefore 
very important. 

The options for reducing the consequences following the occurrence of an unwanted event will 
typically affect the emergency response plan or imply the introduction of passive devices that may 
absorb the energy resulting from the unwanted event.  There may be consequences that seem so 
unacceptable that it is paramount to ensure a very low likelihood of their occurrence. 

The coarse risk analysis may have problems in properly handling the correlation among the different 
variables in the system and/or it may be limited in its modelling of the consequence spectrum that 
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might follow the occurrence of the unwanted event. Compared to fault and event trees (which 
frequently use only binary state variables – success/failure), BN are not limited to binary states2 and 
have much more flexibility in modelling the interdependencies among the variables, and thus arrive at 
more realistic and useful results.  The present paper will illustrate this.  

2.0 DESCRIPTION OF THE CASE STUDY 

This case study takes its point of departure in a selected input based on a detailed Quantitative Risk 
Analysis (QRA) conducted by DNV during the HyApproval project. This was a QRA of a hydrogen 
refuelling station (HRS) with on-site hydrogen production [1, 2], composed of “typical”, 
“representative” units. Therefore, this case study is not based on a real HRS. In HyApproval [3], the 
virtual HRS was used to demonstrate relevant HRS safety challenges. 

The purpose of this paper is to explore the potential benefits of using BN compared to traditional 
QRA, and to discuss and demonstrate the suitability of BN for modelling the risks associated with the 
introduction of hydrogen as an energy carrier. It was therefore decided to select one part of the 
HyApproval HRS as a basis for the comparison. As the dispenser area and the associated interaction 
between the vehicle and the user are often of special concern [4], it was decided to base the case study 
on the input for the gas dispensers. The case study HRS operates more vehicles, ie has more traffic, 
than most HRSs in operation today 

The dispenser for compressed gaseous hydrogen (CGH2) has facilities for filling vehicles with CGH2  
at 700 bar. Upon successful leak detection and shutdown, the dispenser will be isolated from the high 
pressure storage upstream. 

3.0 METHODOLOGY 

This paper utilises, discusses and compares two different approaches to risk assessment. The 
traditional approach is Quantitative Risk Analysis (QRA). This is compared with BN. The 
methodological approaches are described in the following. 

3.1 Quantitative Risk Analysis 

QRA is a systematic approach and methodology for the identification and quantification of a facility’s 
risk contributors. A QRA can provide authorities and stakeholders with a sound basis for creating 
awareness about existing and potential hazards and risks [5]. Based on the findings from the QRA, 
potential measures to control and/or reduce the risk can be suggested, and the effect of the measures 
evaluated. 

The QRA methodology applied is schematically illustrated in Fig.1. 

Compile and Assess Data 

                                                      

 

 

2 Event trees are not limited to a binary state space, but an extension to higher dimensions quickly makes the tree 
so huge that it becomes almost impossible to validate it.     
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Available data [1] was examined and used to define the case study. 

Hazard Identification 

The Hazard Identification undertaken for [1] was used to define the scenarios. The main hazards from 
the QRA that are relevant to the dispensers and user interface are scenarios related to hydrogen gas 
leaks in the dispenser area. 

 

Compile and Assess data

Hazard Identification

Estimation of 
Consequence 

Estimation of 
Frequency

Risk Calculation 

Comparison with 
Acceptance Criteria

Conclusions and 
Recommendations  

Figure 1. Illustration of the QRA process 
 

Frequency Calculations 

The frequencies of occurrence for the different hazards were calculated based on the available 
statistical data. When hydrogen-specific data was not available, data for “comparable” hydrocarbon 
events was used but adjusted to reflect the differences between hydrogen and hydrocarbons. 

Consequence Calculations 

Hazard-specific consequence calculations were carried out. In general, these calculations consider the 
case-specific release potential, and include assessments of gas build-up and dispersion as well as of the 
dimensions and duration of possible fire scenarios. Fires and explosions may affect people in a variety 
of ways, primarily related to heat and radiation and explosion overpressures. 

Risk Calculations - Use of Event Trees 
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The QRA used Event Tree Analysis to assess the possible development of undesired events. The event 
tree provides systematic coverage of the sequence of event propagation. In event tree analysis, each 
event following the initiating event is conditional on the occurrence of its precursor event. In this 
QRA, the outcome of each precursor event was binary (Success or Failure; Yes or No). 

The event tree used to assess the risk associated with the dispensers is shown in Fig.2. For this event 
tree, immediate ignition was defined as ignition caused by sparks or energy exerted at the time of the 
initial rupture/leak. Delayed ignition can occur if the release is not immediately ignited, and might 
cause the formation of a flammable gas cloud that, depending on the situation, might expose more 
and/or other ignition sources than those for immediate ignition. The consequences of the fire might 
also be different from a scenario with immediate ignition. Shutdown failure was interpreted as a 
failure to detect gas and failure to close the isolation valves on demand. Detection and shutdown could 
be initiated automatically and/or manually. 

The end events were then assessed with respect to the potential impact on HRS personnel (first party), 
HRS customers (second party) and people that are not involved with the HRS (third party). In the 
QRA, this impact is estimated as the probability of lethal exposure. The reference study did not 
include assessments of the consequences related to the environment or material damage. 

Immediate
ignition?

Shutdown 
failure?

Delayed 
ignition? End event

shutdown failure 1

Immediate ignition

Shutdown
2

H2 leak

Delayed ignition
3

shutdown failure
No ignition

4
No ignition

Delayed ignition
Shutdown 5

No ignition
6

YES

 

Figure 2. Illustration of the event tree used for the dispensers in the QRA 
 

In its quantitative frame, the typical coarse QRA will only consider the quantification of the frequency 
of occurrence of the unwanted events. The ensuing unwanted consequences are normally only 
assessed according to coarse classes of increasing severity.  In the typical QRA, the consequences are 
rarely quantified on a monetary scale.  In this study we extend the preliminary analysis to estimate the 
loss caused by the consequences. 

The coarse risk analysis represents a risk screening and is conducted to obtain a better understanding 
of the problem. The coarse risk analysis implies an assessment of the frequencies and the 
consequences. This analysis operates with a frequency matrix, a consequence matrix and a risk matrix, 
all of which are used in the quantification of the involved risks.  An important simplification in the 
coarse risk analysis is that the analysis will normally have a focus on evaluating all the single 
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components (or small systems) individually. System effects will normally only to a limited extent be 
taken into account in the analysis. It is very important to always remember this limitation in the 
analysis, as the omission may in some cases be the cause of gross errors in the risk assessment.   

 

Frequency 
class 

Return period 
More than X 

events per year 

2 Daily-Monthly 10 

1 Monthly-yearly 1 

0 1-10 years 0.1 

-1 10-100 years 0.01 

-2 100-1 000 years 0.001 

-3 1 000-10 000 years 0.0001 

-4 10 000-100 000 years 0.00001 

-5 > 100 000 years 0.000001 

Figure 3. Frequency matrix  
 

In the frequency matrix, the frequency of occurrence of an unwanted event is divided into classes from 
one event per more than 100 000 years to as frequent as one event daily or monthly.  The related 
frequency classes, Fc , are labelled from -5 to 2, see, Fig. 3. Note that the mean frequency of 

occurrence in each class is given by 5.0
mean 10 −= Fcλ .  

Similarly, the consequence matrix divides the consequences following an unwanted event into classes 
ranging from “None” through “Significant” to “Catastrophic”.  These classes are labelled from 3 to 8.  
The consequences are further divided into whom or what the consequences affect, e.g. “First and 
second party”, “Production”, “Environment”, or a “Monetary value” (here €), see Fig. 4. 

It is noted that consequences categorized as, for instance, “Significant” have the same weight in the 
risk analysis irrespective of what group they belong to.  If the decision maker does not agree to the 
identical trade off between the different consequences, then it is necessary to adjust the definitions of 
what is “Significant” such that this trade off holds and that “Significant” has the same interpretation 
irrespective of the consequence referred to.  The second last row in the matrix defines a corresponding 
monetary loss for each group.  For the “Significant” class, the equivalent monetary loss is from 
€100,000 to €1 million.  The defined correspondence is used in the conversion of all losses to a 
monetary scale in €.  Note that the average monetary loss for each consequence class may be estimated 

by the class label, Cl , as 5.010 += ClL . 
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Figure 4. Consequence matrix 
 

The last row in the consequence matrix defines the preferences regarding the different magnitudes of 
losses.  This attitude depends on the size of the considered business and of the revenue generated by 
the business.  In the example, the unacceptable limit is set at annual losses in excess of €100,000 per 
year.  The tolerable limit is losses below €10,000 per year, whereas annual losses of less than €1,000 
are considered to be negligible.   

For each of the considered unwanted events, the frequency of the initiating event is first identified 
through its class, see Fig. 3, then the resulting consequences are identified by their consequence class, 
see Fig. 4, and finally any potential barriers for avoiding the unwanted event are identified and 
assessed.  With this information, the risk of each event may be estimated as 

[ ] [ ]barrier1010barrier10)( 5.05.0 PPAr ClFcClFc ⋅=⋅⋅= ++− .  

It is seen that the [ ]barrierP  acts as a thinning probability on the coarse risk estimate3.  The calculated 
risk becomes directly represented by the expected annual monetary loss. The advantage of this is that 
it becomes much easier to compare and evaluate the different risks. Also, personnel with system 
knowledge will be much more qualified to validate the risk analysis.  At least identified risks leading 
to disproportionate estimated monetary losses may be easily identified and further evaluated. 

From the risk analysis, it is straightforward to aggregate and identify the total risk (expected annual 
monetary loss) and to evaluate whether such annual losses are acceptable.  Further, it is easy to 
identify those areas that contribute the most to the total risk and thus should be subjected to an 

                                                      

 

 

3 If the frequency of occurrence of the event is known, then the barrier probability may be used to adjust the 
coarse mean frequency to its exact value. 
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assessment of possible ways of mitigating these risks, either by reducing the frequency or 
consequences or by increasing the number of barriers that have been implemented. 

Hence, the thus performed risk screening may directly be used as the fundament for selecting different 
risk-reducing measures. Alternatively it may be decided that a more detailed analysis is necessary and 
the coarse risk analysis may thus be used in defining the boundaries for a detailed analysis. 

Risk-reducing measures 

The objective of both the coarse risk analysis and the detailed risk analysis is to assess the risk in 
different areas.  This is achieved by focusing on the probability of a specific unwanted event occurring 
and on the resulting consequences following the event. If the estimated risk is unacceptable, it is 
necessary to identify risk-reducing measures that reduce either the frequency or the consequences of 
the occurrence of the unwanted event.   

For each individually considered risk element, it must be decided whether or not the investment in the 
risk-reducing measures has the effect of reducing the risk to an acceptable level.  Using the principle 
laid out here, this cost benefit analysis becomes particularly simple, since the cost of the measure may 
be directly compared to the reduction in risk.  If a given risk-reducing measure results in a reduction of 
the risk from say €175,000/year to €145,000/year, then this measure would obviously be 
recommendable if the cost of it is less than €30,000/year. Otherwise the risk-reducing measure costs 
more than the benefit from it and thus does not need to be implemented - unless required by 
regulations.   

The risk analysis hence becomes an iterative procedure that continues until control is gained over all 
the unacceptable risks. 

3.2 Bayesian Network 

Some of the steps in the risk assessment using the QRA approach are also required for the evaluations 
using the Bayesian network. In particular this applies to: Compile and Assess Data; Hazard 
Identification; Frequency Calculations; and Consequence Calculations. For the purpose of this paper, 
these are therefore not elaborated on further in relation to the Bayesian network. 

A Bayesian network consists of nodes that are connected by arrows.  Each node represents an 
uncertain variable that will be defined through a possible set of states.  The “Weather” node shown in 
Fig. 5, for instance, may contain the states {Good weather, Storm, Rain, Heavy rain, Fog}.  At any 
point in time, only one of these conditions may be present (the states are said to be mutually 
exclusive).  The choice of states implicitly reflects the time frame of the problem that is modelled.  In 
the present case, the model’s time frame should be shorter than the time scale of changes in the 
weather.  We may argue that the weather time scale could be of the order of six hours. (If the duration 
of the analysed problem extends beyond this time window, then the model should be modified to 
account for this extension.) The frequency of occurrence of the individual states in the “Weather” node 
may be found from meteorological recordings. The arrow shows the direction of the causal 
relationship between the nodes.  For instance, the “Weather” node will have a direct causal effect on 
“Visibility”.  The states of the “Visibility” node may be defined as the visible distance in kilometres, 
such as {0-0.25 km, 0.25-0.5 km, …, 25-30 km}. The fact that the visibility is defined conditional on 
the weather makes it much easier for people with system knowledge (experts) to assess, judge and 
justify the probability distribution over the individual states.  The estimated probability distributions 
are not shown. 
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Figure 5. Simple Bayesian network that describes the causal relationship between the weather condition and the 
meteorological visibility 

 

 

 

Figure 6. Bayesian network modelling of the dispenser area of the hydrogen refilling station. The top four nodes 
are equivalent to the original event tree 

 

The probability distributions of the individual nodes will in general be evaluated on the basis of either 
statistical data, expert assessment or a or a combination of these two methods. 

Since the network is built with a focus on the causal relationship, it becomes more straightforward for 
experts to evaluate whether or not the overall probabilistic model represents a useful approximation to 
reality. The model transparency is one of the important advantages of modelling complex systems 
using BN. People who possess system knowledge may quickly learn the modelling’s intuitive 
principle such that they can confidently ensure that the model-realism is captured to an appropriate 
degree.  

To illustrate the usefulness of Bayesian network modelling, we have made two constructs of the 
dispenser area of the hydrogen refilling station.  The first is equivalent to the event tree analysis of the 
original study but extended to also include the consequences. This network is shown in Fig. 6. The 
network in Fig. 7 is a reconstructed model to better reflect the actual hydrogen refilling station. This 
network is still under construction.  
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The four upper nodes in Fig. 6, “Leak size”, “Immediate ignition”, “Shut down failure” and “Delayed 
ignition”, represent the event tree illustrated in Fig. 2. This part illustrates that “Immediate ignition” 
and “Shut down failure” are conditionally independent, whereas “Delayed ignition” is conditionally 
dependent on both of these.  It would have been more transparent to merge the two nodes “Immediate 
ignition” and “Delayed ignition” into a single node “Ignition time” with the states ‘None’, 
‘Immediate’, and ‘Delayed’.  This node has been added, but was not part of the original event tree. 
Given “Leak size” and “Ignition time”, the “Cloud size” of the ignited fire can be estimated.  The 
states of this node range from 0 m to 23 m to represent the dimensions of possible fires identified from 
the CFD analysis. On the basis of the “Cloud size”, the number of people harmed and the material loss 
are estimated. The results of this network are described in the subsequent section. 

 

 

Figure 7. Extended Bayesian network modelling of the dispenser area of the hydrogen refuelling station 
 
The network in Fig. 7 extends the simple event tree model to establish a more accurate model of the 
situation in the reference case study. This model is still under construction and we will not describe the 
causal modelling in detail. The network takes into account the storage bundle that will be active while 
a vehicle is filling hydrogen. It may further be noticed that the model shows the shutdown procedure 
in more detail. A perceived critical element in the shutdown procedure is the possible delay in the time 
it takes to identify a small leak and activate the manual emergency shutdown.  

4.0 RESULTS 

Based on the Hazard Identification in [1], the scenarios considered in the QRA were small and large 
leaks from the gas dispenser (compressed hydrogen gas). In the coarse risk analysis we considered the 
following scenarios from the gas dispenser scenarios (compressed hydrogen gas): jet fire due to small 
leak, flash fire due to small leak (delayed ignition), flash fire and jet fire due to small leak (shutdown 
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failure, delayed ignition), jet fire due to large leak, flash fire due to large leak (delayed ignition), and 
flash fire and jet fire due to large leak (shutdown failure, delayed ignition). 

The tables below show the estimated risk shown by the coarse risk analysis. The top table shows that 
the total annual risk (monetary loss) is of the order of €30 000. The bottom table shows how the losses 
are distributed among the different consequence categories. From the table, it can be seen that most of 
the losses stem from third party injuries and loss of life (here defined as the customers). 

Hydrogen refilling station Total Risk Estimated loss
CGH2_Minor 3,2 1 534
CGH2_Major 4,5 31 139
Total 4,5 32 673  

PD Sum ND Sum PR Sum MK Sum EM Sum
CGH2_Minor 219 219 626 626 626 626 63 63 1 534
CGH2_Major 30 047 30 047 399 399 631 631 63 63 31 139
Total 30 266 30 266 1 025 1 025 1 257 1 257 126 126 32 673

Production Material Environment
Total RiskHyApproval

First and second party Third party

 

A rapid overview of the estimated losses may be obtained by plotting the risk results in a risk matrix. 
Fig. 8 shows the resulting risk matrix.  All the events considered are represented by an id and plotted 
in the matrix.    

HyApproval (2) None (3) Negligible (4) Significant (5) Serious (6) Critical (7) Very Critical
(8) 

Catastrophic

100 - 1 000 1 000 - 10 000
10 000 - 
100 000

100 000 - 
1 000 000

1 000 000 - 
10 000 000

10 000 000 - 
100 000 000

>100 000 000

(2) Daily - 
monthly

>10 per year

(1) Monthly-
yearly

1 - 10 per year

(0) 1-10 year 0.1 - 1 per year

(-1) 10-100 year
0.01 - 0.1 per 

year
CGH2_Minor

(-2) 100-1000 
year

0.001 - 0.01 
per year

P1.4; P1.8; 
P1.12

P1.2; P1.3; 
P1.6; P1.7; 

P1.9; P1.10; 
P1.11

(-3) 1000-10 
000 year

0.0001 - 0.001 
per year

P2.4

P1.1; P1.5; 
P2.2; P2.3; 
P2.6; P2.8; 

P2.12

P2.7; P2.10; 
P2.11

P2.1
HyApproval; 

CGH2_Major; 
P2.5; P2.9

(-4) 10 000-100 
000 year

0.00001 - 
0.0001 per 

year

(-5) > 100 000 
year

<0.00001 per 
year

Fr
eq
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nc

y 
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Consequence

 

Figure 8. Risk matrix. All the events considered are represented by an identifier. From the location of the 
“HyApproval” it can be seen that the total risk is governed by “Very critical” consequences stemming from rare 
events (return period 1 000-10 000 years). The basic events are P2.5: Flash fire due to large leak and P.2.9: Flash 

and jet fire due to large leak. 
 

The two most dominant single events are P2.5: Flash fire due to large leak (shutdown failure, delayed 
ignition), which represents a calculated annual loss of around €15 000, and P.2.9: Flash and jet fire 
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due to large leak (delayed ignition), which produces an annual loss of around €12 000. Both these 
events were assessed by the Bayesian network methodology to have the potential to cause more than 
one fatality. 

The coarse risk analysis is coarse, and in some cases it may therefore be necessary to establish a more 
detailed model to properly capture the model’s interactions and details.  We recommend using BN for 
this.  We use the example construct presented in Fig. 6 to illustrate a few of the advantages of using 
BN. Firstly, because of the graphical representation, it is reasonably straightforward for third parties to 
capture the level of detail of the modelling and also how the analyst has interpreted the system’s 
functional model. This understanding is very important as it facilitates validation by employees who 
have specific knowledge about the real system. Secondly, it is easy to play with the model by entering 
evidence and testing how the model reacts to such evidence. Thirdly, when evidence is entered it is 
also straightforward to identify the most likely configuration of the model that led to this event. This 
type of propagation is called a max-propagation. This information is highly relevant when searching 
for efficient areas in which to implement risk control options. 

By performing a max propagation conditional on the number of fatalities, we find that the most likely 
condition for one fatality is a small fire, ignited immediately. For two or more fatalities, the most 
likely condition is similar to the previous one apart from the fire being large. The analysis indicates 
that the safety system is functioning well. In the extended network we will model the safety system in 
more detail in order to better understand the weaknesses of that system.    

5.0 DISCUSSION 

One main advantage of the Bayesian network applied here is that the results quantify the estimated 
monetary loss resulting from the different scenarios. This is of course also possible for standard QRAs 
and is normally done when the stakeholder requesting the analysis asks for it. 

When quantifying risk, it is important to have access to relevant accident and incident information. 
The availability of hydrogen-specific incident and accident information is limited, making a direct 
estimate of incident frequencies challenging. When sufficient statistical data on historical hydrogen 
incidents was not available, data for hydrocarbon incidents was used. The use of hydrocarbon data to 
assess hydrogen risk represents a source of inaccuracy for risk assessments irrespective of whether the 
methodology applied is a Bayesian network or a traditional QRA. Both methods are equally dependent 
on good and reliable data input. It could be argued that the transparency which could be obtained by 
BN could make it easier to validate the use of such data, provided suitable experts are available for 
such validation. 

5.1 Bayesian network versus QRA 

In general, risk analysis problems constitute complex systems that require the modelling of 
interrelationships between different technical disciplines as well as humans and organizations. 

While event trees are graphical representations of a logical model that identify and quantify possible 
outcomes following an initial event, a Bayesian network is a graphical representation of uncertain 
quantities and decisions that explicitly reveals the probabilistic dependence between the variables and 
the related information flow. Both approaches use a graphical representation to visualize the risk 
assessment methodology.  

The nature of the BN allows greater freedom and flexibility to analyze and visualize the dependence 
between the different variables than a standard event tree. This can make validation easier for third 
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parties as it might be easier to follow the logic behind an analysis. Much of the Bayesian analysis of 
the probabilistic dependence between variables will be integrated into the traditional QRA by the 
analyst. Therefore it may be more difficult to understand for someone unfamiliar with the specific 
analysis or methodology.  

Although it is easier to visualize the logic of the analysis when BN are used, these networks may also 
become complex and difficult to follow unless they are designed very carefully. Both methods 
therefore require the careful design of the representation of the system to be studied for maximum 
transparency and to facilitate validation. 

For both methods, it is also important to utilize good modelling tools. The underlying modelling in a 
Bayesian network may not be any easier to follow than the underlying modelling in a QRA. This 
partly depends on the specialists utilizing and developing tools to apply these methodologies. The 
further development of such tools and further development and refinement of the methodologies are 
recommended. 

6.0 CONCLUSIONS 

This paper has explored the potential benefits of using BN compared to traditional QRAs.  
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