How to avoid...

THE

BLACK SWAN

H2 Safety Research Needs

Releases

- Impinging and wall attached jets and jet fires with the associated heat transfer to set conditions for safe blowdown
- Properties and behaviour of cold hydrogen from liquid releases Evaluate the effects of various LH2 spill quantities, spill-and-surrounding configurations, atmospheric conditions, ignition energy, and ignition time delays on resultant blast hazards.
- Further the understanding of ignition phenomena to allow suitable modelling - Perform systematic studies of the ignition energy of potential ignition sources in order to classify practical ignition sources as weak or strong initiators

H2 Safety Research Needs

Fires

- Assess thermal radiation effects and the effects of water vapor / droplet absorption
- Evaluate existing **fire control techniques**: dry chemicals, foams, etc. as found useful in controlling LNG fires

Explosions

- Transitional combustion phenomena in realistic conditions (low temperatures, congestion, non-uniform mixtures...) and the impact on mitigation measures, for example flame acceleration and deflagration-detonation-transition in the presence of water sprays
- Experimentally verify detonation in open air detonable clouds. (Evaluate strong initiator and the possibility of transition from deflagration to detonation in the absence of turbulence inducers)

H2 Safety Research Needs

Mitigation

 Establish appropriate flame-arrester criteria and design/develop reliable flame-arresters

Tools

- Develop further appropriate safety engineering methodology like a reference quantitative risk assessment methodology and apply it to garage, tunnel scenarios etc
- Development of a reliable reference simulation tool for combustion open to the research community

Performance based standards

- Formulation of requirements for permitting the use of hydrogen vehicles in confined spaces
- Release strategies related to accidental scenarios, i.e. scientifically grounded requirements to location of and operational parameters for pressure relief devices

"Extreme Topics"

- Electrostatic properties of H2 at all relevant physical domains
- Detonation arrestors
- Shock absorbing materials
- and

Provocation

So that we can help to introduce the "Safest Fuel Ever"

