International Conference on Hydrogen Safety (ICHS3) Palais des Congrès Ajaccio - FRANCE 16-18 September 2009

NATURAL AND FORCED VENTILATION STUDY IN AN ENCLOSURE HOSTING A FUEL CELL

Marco N. Carcassi, Gennaro M. Cerchiara, Martino Schiavetti, Nicola Mattei.

The purpose of the experimental work is to determine the conditions for which an enclosure can guest a <u>fuel cell</u> for civil use.

ATEX – Limits.

- Zone 0 : Continuous leakage \rightarrow 25%LEL = 1%H₂vol;
- Zone 1 : Operational release \rightarrow 25%LEL = 1%H₂vol;
- Zone 2 : Occasional leakage \rightarrow 50%LEL = 2%H₂vol.

CEI EN 60079 - 10

"Electrical apparatus for explosive atmospheres Guide for classification of hazardous areas"

The fuel cell and the leakage monitoring system

Fuel Cell - Penta H2

Length 800 mm; Depth 688 mm Height 1024 mm; Weight 200 kg

Performance

Net electric power: 1 to 5 and Idle

Voltage: 120 or 220 VAC

Hydrogen Supply

Hydrogen Grade: Grade 5.5 (EU)

Inlet pressure: 2-5 bara

Mass flow: Dead end - pulsing

Anode stoichiometric: 1,02

Fuel Consumption: 4,2 Nm³/hr at max power

Small leakage from H_2 inlet CEI 31 - 35 (2001 - 01) recommendation $\Phi_L = H_2$ Leakage Diameter for pipelines < 150 mm the leakage Area is $A_L = 0.25$ mm²

$\Phi_{\mathbf{P}} =$	6	mm
-----------------------	---	----

	$oldsymbol{\phi}_{ m L}$	$A_{ m L}$		7//		P _{H2} [bar]		
	[mm]	[mm ²]	2	2,5	3	3,5	4	4,5	5
G _{H2}	0,56	0.25	18,25	22,76	27,34	31,92	36,50	41,08	45,66
[0,8	0.50	36,72	45,89	55,12	64,14	73,37	82,76	91,62
	1.13	1.00	73,74	91,18	109,36	128,13	146,30	164,77	183,25

Calculations performed by EFFECTS-SGIS 7.3.

Leakage Monitoring System

The CVE hosting the fuel cell and the vent system

Fuel cell PentaH2 installed inside CVE

Particular of the Vent 1 (central)

Size and location of Vent 2 and Vent 4 (Side C) coordinates in [mm] $A_{V2} = A_{V4} = 0.14$ m2.

 $A_V = Vent Area [m^2]$

Size and location of Vent 1
(Side A) coordinates in [mm];

Vent 1 small = central rectangle $A_{VIs} = 0.35 \text{ m}^2$;

Vent 1 big = both rectangles $A_{V1b} = 0.70 \text{ m}^2$.

Small leakage from H₂ inlet.


```
Size of Vent 1: Vent 1 small (V1s) = 0.35 \text{ m2}; Vent 1 big (V1b) = 0.7 \text{ m2};
```

Size of Vent 2: 0.14 m2 fixed (V2);

Size of Vent 3: 0.35 m2 fixed (V3);

Size of Vent 4: 0.14 m2 fixed (V4);

Leakage flow in [nl/min]: small (GH2s) = 40; average (GH2a) = 90; big (GH2b) = 180

H2 sampling points.

- Five Channels %H₂vol.
 - a) flow meters;
 - b) sampling pipelines;
 - c) zeolites;
 - d) concentration measurers.

The geometry of ventilation and ATEX value of recirculation air flow

The geometries of the ventilation tests

Natural Ventilation Test results

Test 11-2008-04-02

Test 12-2008-04-02

		H2 Flow [l/min]	90	
		Vent Area [m ²]	0.70 + 0.14	
	Dι	uration of the leakage [s]	373 Os4 C	3 S5O
	Г	Direction of the leakage	-Y	
		Coordinates (x; y; z)	1200 ; 1900 ; 800	
	Dia	meter of the nozzle [mm	6	
	2,5 -		Test 12-2008-04-02	
Н2%voг	2 -	mand	many many many many many many many many	
	0,5 -		Mathala plat and approvement out of he	vp. s.
	0 -	0 50 100	150 200 250 3	350 400

Empirical model for the calculus of the venting area

Natural Ventilation Model steps.

Step 1:	Step 2:	Step 3:
Choose of the NV Geometry	calculus of Q _{aw} using Steady state equation	Calculation of A _{aw} using the ATEX [1] Correlation between Q _{aw} and A _{aw}
	$H_2^{(P)}$ %vol = $100 \frac{Q_{H2}}{Q_{aw} + Q_{H2}} (K_v^{-1})$	Q _{aw} = 0.025 Av W
	$\frac{11_2}{Q_{aw} + Q_{H2}} \times \frac{1}{Q_{H2}}$	$Q_{aw} = c_s A_{aw} W (\Delta c_p)^{0.5}$
		$\frac{1}{A_{aw}^2} = \frac{1}{(V1 + V3)^2} + \frac{1}{(V2 + V4)^2}$

To set the ventilation system we need:

NV Geometry
$$\rightarrow$$
 K_V \rightarrow $Q_{AW} \rightarrow A_V$

Calculus of K_V

In Steady State Conditions

$$H_2$$
%vol = $100 \frac{Q_{H2}}{Q_{aw} + Q_{H2}}$

During the initial steps of the tests the enclosure volume with homogenous H2 concentration is a fraction K_V of the whole internal volume.

$$\mathbf{H}_{2}^{(P)}$$
%vol = $100 \frac{Q_{H2}}{Q_{aw} + Q_{H2}} K_{\nu}^{-1}$.

H₂(P)% vol and Q_{H2} are measured during the experiments

Test plan for the calculus of K_V

Plan A (K	v)	Plan B (K_{ν})			
H ₂ Flow [l/min] 40			H ₂ Flow [l/min]	90	
Vent Area [m²]	0.35 + 0.14		Vent Area [m²]	0.35 + 0.14	
Duration of the leakage [s]	1200		Duration of the leakage [s]	1200	
Direction of the leakage	Z		Direction of the leakage	Z	
Coordinates (x ; y ; z)	1070 ; 1480 ; 925		Coordinates (x ; y ; z)	1070 ; 1480 ; 925	
Diameter of the pipe [mm]	6		Diameter of the pipe [mm]	6	
Nozzle diameter [mm]	6		Nozzle diameter [mm]	6	

Test plan for the calculus of K_V

Forced Ventilation Tests and results

Forced Ventilation Tests

	Direction of air-flow	-	Fan air-flow,	NV 40 l/min	NV 90 1/min	NV 1801/min
Geometrical Configuration	Fan area $Af = 0.05 \text{ m}^2$	Free vent area	Internal value of	Efficient Y/N	Efficient Y/N	Efficient Y/N
	****		Q _{sw}	TEST n°	TEST n°	TEST n°
	+	$Av = 0.14 \text{ m}^2$	$Q_{aw} = 0.66 \text{ m}^3/\text{s}$	Y	Y	N
		Av – <u>0.14.m.</u>		/	24	33
		$Av = 0.14 \text{ m}^2$	$Q_{aw} = 0.33 \text{ m}^3/\text{s}$	Y	Y	N
		AV - <u>0.14 m</u> -	Qaw - 0.33 m ⁻ /s	/	27	30

Fan Model AX	rpm	Power [kW]	Voltage [V]	current intensity [A]	Diameter [mm]	Air – flow [m ³ /s]	Coordinates fan centre [x; y; z]					
254T	1500	0.04	220/290	0.25	260	0.22	Fan 1 (1375; 0; 2670)					
2341	1300	0,04	220/380	220/380	220/380	220/380	220/380	0,25	220/380 0,25		0.33	Fan 2 (1375; 3220;2670)

Conclusions

Where it is possible, it is convenient to use one or more suitable solutions like:

- -To reasonably increase the vent areas beyond the minimum value;
- -To consider the vent areas for a leak flow reasonably bigger then the minimum;
- -To incline the roof making the NV easy and efficient;
- -To install a small fan able to remove the internal mixture from the enclosure.

The limit of 40 l/min of the leakage is relevant for every kind of fuel cell suitable for civil use. leaks beyond 90 l/min would refer to catastrophic leakage and therefore should not be considered with the assumptions made.

THANK YOU

Marco N. Carcassi, Gennaro M. Cerchiara, Martino Schiavetti, Nicola Mattei.