VENTED EXPLOSION OVERPRESSURES FROM COMBUSTION OF HYDROGEN AND HYDROCARBON MIXTURES

C. Regis Bauwens, Jeff Chaffee and Sergey Dorofeev FM Global, Research Division, Norwood, MA, USA 3rd ICHS, September 16-18, 2009

Explosion Venting

- Venting is used to reduce the consequences of explosions
- The requirements for the venting have been specified in engineering standards
 - NFPA 68 (2007)
 - EN 14994:2007
- Standards based on empirical correlations of limited experiment data which may be off by an order of magnitude
- Hydrogen
 - Weak enclosures (rooms) out of range of validity of correlations
 - Strong enclosures (equipment) based on questionable $K_G = 550$
- There are other methods V.Molkov yet there are unresolved issues

Research Program Objectives

- To generate a set of experimental data examining the effect of:
 - mixture composition
 - ignition location
 - vent size
 - obstacles
 - scale
- Use the experimental data to develop and validate a computational model
- Update technical recommendations and FM operating standards relevant to explosion hazards and to develop new models and engineering tools

Hydrogen Mixtures

- Additional challenges
 - Hydrodynamic flame instability is enhanced by thermal diffusion effects in lean hydrogen mixtures
 - Effect of Le on the turbulent burning velocity
- Currently, these effects are not known well enough to be reliably modeled
- Comparisons with methane-air and propane-air mixtures should yield an insight on how to model them

Objectives of this study:

- Examine the similarities and differences between three mixtures of similar laminar flame speed
 - 18% hydrogen-air
 - 9.5% methane-air and
 - 4.0% propane-air
- Test an extension to the numerical CFD model developed in the previous studies and identify its capabilities and deficiencies to describe the physics responsible for the pressure build-up

Experimental Setup

Chamber Details

- Overall size:
 - 4.6 x 4.6 x 3.0 m
- Volume:
 64 m³
- Vent Sizes:
 - 5.4 m² or 2.7 m²
- Vent Material:
 - 0.02 mm Polypropylene Sheet

Experimental Setup

Ignition Locations:

-Melobal

Experimental Setup

Test Parameters

• 3 mixtures, 3 ignition locations, 2 vent sizes and no obstacles

Mixture	Laminar Burning Velocity, S_L (m/s)	Expansion Ratio, σ	Flame Speed, $(\sigma \times S_L)$ (m/s)	Average Measured Initial Flame Speed, U ₀ (m/s)
4.0% Propane	0.40	8.0	3.2	3.31 ± 0.06
9.5% Methane	0.38	7.5	2.9	2.90 ± 0.14
18% Hydrogen	0.64	5.2	3.3	6.47 ± 0.16

Experimental Results

Effect of Mixture composition

Explosion overpressures

Center ignition 2.7 m² vent

Back-wall ignition, 5.4 m² vent

Experimental Results

Effect of Mixture composition

Flame speeds normalized by LFS

Center ignition 2.7 m² vent

Back-wall ignition, 5.4 m² vent

Experimental Results

Effect of Mixture composition

- Flame speeds normalized by initial flame speeds
- Enhancement of the hydrogen propagation speed caused by flame instabilities remains constant throughout the combustion process

Center ignition 2.7 m² vent

Back-wall ignition, 5.4 m² vent

OpenFOAM

- OpenFOAM (Weller et al. 1998)
 - <u>Open</u> source <u>Field</u> <u>Operations</u> <u>And</u> <u>Manipulation</u>
- Solver details
 - Fully compressible implicit NS solver
 - 2nd order discretization schemes in time and space
- LES model
 - One equation eddy viscosity model for sub-grid turbulence

Partially Pre-Mixed Combustion Model

Regress Variable Combustion Model

$$\frac{\partial \overline{\rho} \widetilde{b}}{\partial t} + \nabla \cdot \left(\overline{\rho} \widetilde{\mathbf{U}} \widetilde{b} \right) - \nabla \cdot \left(\overline{\rho} \mathcal{D} \nabla \widetilde{b} \right) = -\overline{\rho}_{u} S_{L} \Xi \left| \nabla \widetilde{b} \right|$$

- Sub-grid flame wrinkling, \varXi , is due to both turbulence and flame instabilities
- Taylor instability model important to resolve external explosion (ICDERS-2009)
- Separate transport equations for Ξ_{RT} and Ξ_{T}
 - Assumption of different dominant length scales

$$\Xi = \Xi_{HI} \cdot \Xi_{RT} \cdot \Xi_T$$

Combustion Model - HI

• Flame surface area increase due to hydrodynamic instability

$$\frac{A}{A_0} = \left(\frac{\lambda_m}{\lambda_c}\right)^{1/3} = \left(\frac{\lambda_m}{\Delta}\right)^{1/3} \left(\frac{\Delta}{\lambda_c}\right)^{1/3}$$

$$\Xi_{HI} = \max\left[1, a_I \left(\frac{\Delta}{\lambda_c}\right)^{1/3}\right] = \max[1, \theta]$$

- Constant for given grid size (Δ) and given mixture (λ_c)
- θ (hydrogen)/ θ (methane, propane) \approx 2.4 consistent with known values of λ_c

Combustion Model - Turbulence

• Sub-grid wrinkling due to Turbulence (Weller et al 1998, Bradley et al 1992)

$$\frac{\partial \Xi_T}{\partial t} + \mathbf{U}_s \cdot \nabla \Xi_T = G \Xi_T - R(\Xi_T - 1) - (\sigma_t - \sigma_s) \Xi_T$$

$$G = \frac{0.28}{\tau_{\eta}} \qquad R = G \frac{\Xi_{eq}}{\Xi_{eq} - 1}$$

$$\Xi_{eq} = a_T \left(u' / S_L \right)^{\frac{1}{2}} \left(\Delta / \delta \right)^{\frac{1}{6}} L e^{-n}$$

- All mixtures: $\alpha_T = 0.7$
- Factor Le^{-n} undistinguishable from Ξ_I (n = 0.5)

Computational Grid

- Unstructured
 Grid
- 0.05m cell size
- 1.2M cells

Results – Simulations

0.16 18.5% Hydrogen Back Ign. 5.4 m² 0.12 18.2% Hydrogen Overpressure (bar) Simulation vent 0 obs.: 0.08 0.04 0.00 -0.04 0.2 0.3 0.5 0.0 0.1 0.4 0.6 Time (s) 0.08 18.2% Hydrogen Center Ign. 5.4 m² Simulation Overpressure (bar) 0.06 vent 0 obs.: 0.04 0.02 0.00 0.1 0.2 0.3 0.0 0.4 0.5 Time (s)

Results – Propane

Back Ign. 5.4 m² vent:

FMGTabal

Results – Simulations

Movie

FMGIODAI

Conclusions

- Experiments showed that flame speeds and overpressures in H₂ mixtures were much higher than that in methane and propane due to flame instabilities, despite close laminar values
- Laminar flame speeds are not sufficient to characterize mixture reactivity in vent-sizing for hydrogen mixtures
- CFD model was tested that takes into account mixture properties, flame instabilities and turbulence
- Numerical results reproduce basic features observed in experiments, such as overpressures and flame speeds for the range of parameters studied
- Further studies are planned to include effects of scale and obstacles in the model validation exercises