





### Consequence Assessment of the BBC Hydrogen Refueling Station, Using the ADREA-HF Code

#### E. Papanikolaou<sup>1,3</sup>, A.G. Venetsanos<sup>1</sup>, M. Schiavetti<sup>2</sup>, A. Marangon<sup>2</sup>, M. Carcassi<sup>2</sup> and N. Markatos<sup>3</sup>

 <sup>1</sup> Environmental Research Laboratory, National Centre for Scientific Research Demokritos, 15310, Aghia Paraskevi Attikis, Greece, venets@ipta.demokritos.gr
<sup>2</sup> Università degli Studi di Pisa, Dipartimento di Ingegneria Meccanica Nucleare è della Produzione, Largo Lucio Lazzarino 1, 56126, Pisa, Italy
<sup>3</sup> National Technical University of Athens, School of Chemical Engineering, Department of Process Analysis and Plant Design, Heroon Polytechniou 9, 15780, Zografou, Greece







# Outline

- Scope
- Description of the BBC Gaseous Hydrogen Refueling Station
- Quantitative Risk Analysis (QRA)
  - Consequence Assessment Using the Integral Code GAJET and the ADREA-HF CFD Code
    - Confined Scenarios
      - Release and Dispersion Calculations
      - Results
    - Open/Semi-confined Scenarios
      - Release and Dispersion Calculations
      - Results
- Evaluation of vulnerabilities
- Conclusions







### Scope

- Overall aim of HYQRA
  - Quantitative Risk Analysis (QRA) studies of  $H_2$  applications within internal project HyQRA of HYSAFE
  - A Benchmark Base Case (BBC) was selected

• inter-comparison of various QRA approaches applied by partners on an agreed pre-defined hypothetical gaseous H<sub>2</sub> refueling station

- identification of knowledge gaps on data and information used in the QRA steps specifically related to  $\rm H_2$ 

- NCSRD and UNIPI collaborated on a common QRA
  - UNIPI identified the hazards on site, selected the most critical ones, defined the events that could potentially cause an accident and prepared the scenarios in risk order
  - NCSRD performed quantitative analysis for the confined and open/semi-confined scenarios through numerical simulations using the integral code GAJET and the CFD code ADREA-HF. Results were provided to UNIPI
  - UNIPI performed quantitative analysis of open scenarios using the numerical code Effects 7.6 and compared the results with the ones by NCSRD

• UNIPI evaluated the consequences in terms of overpressure and heat radiation to determine the distances of damage in the station







# Description of the BBC H<sub>2</sub> Refueling Station



BBC Gaseous H<sub>2</sub> Refueling Station Flow Sheet



Layout of the BBC Gaseous H<sub>2</sub> Station and its Surroundings

#### Flow Sheet

Simplified Piping and Instrumentation Diagram of H<sub>2</sub> equipment

 $\rm H_2$  supply by pipeline at low pressure (4 barg) and 20°C temperature from external source

Purification and Compression:  $H_2$  compressed in 2 stages (first to 150 and finally to 450 barg). Compression with 2 separated trains with only 1 operated each time. Train not in use was not purged.

 $H_2$  storage: outdoors, 6 banks of 5 cylinders (0.5m<sup>3</sup>) each (approximately 560 kg of  $H_2$  in total)

3 Dispensers to deliver H2 to a car

#### <u>Layout</u>

Purification/drying building, Compression building, Storage bank, Storage cabinet, 3 dispensers underneath a canopy

#### **Surroundings**

School, Restaurant, Apartments, Shopping Mall, Offices, Trees

Personnel present on site: operators (continuously) and customers (during refueling time)







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

### Quantitative Risk Assessment by UNIPI

• Identification of the hazards: analysis of all equipment on site and their functions, possible deviations, causes and consequences

Risk = Likelihood \* Severity

Likelihood: from literature, Severity: based on qualitative judgment

 Selection of most critical events/hazards through the Fundamental Risk Matrix

|                    | Likelihood – L index                                                                        |                                |                                                                                             |                   |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------|-------------------|--|--|--|
|                    | 4                                                                                           | 3                              | 2                                                                                           | 1                 |  |  |  |
|                    | $F \ge 10^{-2}$                                                                             | $5 * 10^{-4} \le F < 10^{-2}$  | $5*10^{-6} < F < 5 * 10^{-4}$                                                               | $F \le 5*10^{-6}$ |  |  |  |
| Severity – S index | $F \ge 0.01$                                                                                | $0.0005 \le F \le 0.01$        | 0.000005 <f<0.0005< th=""><th><math display="block">F{\leq}0.000005</math></th></f<0.0005<> | $F{\leq}0.000005$ |  |  |  |
| 4                  |                                                                                             |                                |                                                                                             |                   |  |  |  |
| 3                  | _                                                                                           |                                |                                                                                             |                   |  |  |  |
| 2                  | 1.1.1.1;                                                                                    |                                |                                                                                             |                   |  |  |  |
| 1                  |                                                                                             |                                |                                                                                             |                   |  |  |  |
|                    |                                                                                             | LEGEND:                        |                                                                                             |                   |  |  |  |
| NON ACCEPT         | T <u>ABLE RISKS</u> : the                                                                   | e events that fall in this reg | gion are non acceptable                                                                     | and more detailed |  |  |  |
| analysis are re    | commended (see 1                                                                            | next paragraphs).              |                                                                                             |                   |  |  |  |
| <u>ALMOST ACC</u>  | ALMOST ACCEPTABLE RISKS or ALARP (As Low As Reasonably Practicable) REGION: the             |                                |                                                                                             |                   |  |  |  |
| events that fal    | t fall in this region are almost; nevertheless a more detailed analysis is recommended (see |                                |                                                                                             |                   |  |  |  |
| next paragraph     | next paragraphs).                                                                           |                                |                                                                                             |                   |  |  |  |
| ACCEPTABLI         | E RISKS: for the e                                                                          | events that fall in this regio | on, the design and the m                                                                    | nanagement of the |  |  |  |
| plant guarante     | e an adequate cont                                                                          | trol of the risk. No need to   | proceed with more detai                                                                     | led analysis.     |  |  |  |









# Quantitative Risk Assessment by UNIPI

• Revision of events located in the red & yellow zones of the Fundamental Risk Matrix done by taking into account the effectiveness of emergency/detection systems  $\rightarrow$  quantitative fault tree analysis using the frequencies of the failures of H<sub>2</sub> detection systems, PT transducers and emergency shut down systems.

• Re-evaluation of frequencies of accidental occurrences  $\rightarrow$  quantitative event tree analysis information from literature

#### Compensated Risk Matrix

• Scenarios still in the red & yellow zones  $\rightarrow$  quantitative evaluation of the consequences  $\rightarrow$  NCSRD simulations for all scenarios, UNIPI calculations for open scenarios









# **Consequence Assessment**

#### UNIPI prepared 15 scenarios to be simulated by NCSRD

- Confined scenarios: Compression and Purification/Drying Buildings
- Open/semi-confined scenarios: Storage Cabinet, Storage Bank, Dispensers

#### **NCSRD Simulations**

- Integral code GAJET for release calculations
  - Transient application of the Birch approach to represent the time decreasing fictitious source diameter at expanded conditions in case of time varying release
- CFD code ADREA-HF for dispersion calculations
  - Solution of the transient 3d fully compressible conservation equations for mixture mass, mixture momentum and hydrogen mass fraction
  - For all simulations turbulence was modeled with the k-ε model extended for buoyant flows
  - Cartesian grids with porosity formulation

#### Dispersion results given to UNIPI

- Risk assessments parameters: Flammable (4-75% concentration) H2 mass and mixture volume histories, Maximum horizontal and vertical distances from source to LFL cloud
- Physical behavior: Time evolution of LFL clouds (4% iso-surfaces)

#### UNIPI calculated overpressure and heat radiation contours for the open scenarios







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Desigr

# NCSRD simulations – Confined scenarios

- Compression building
  - Small leak (C1 scenario), large leak (C2 scenario), pipeline capture (C3 scenario)

| Scenario | Diameter of leak (mm) | Leak position<br>(m) | Leak<br>direction | Stored H2<br>(m <sup>3</sup> ) | Temperature (K)<br>and pressure (bar) |
|----------|-----------------------|----------------------|-------------------|--------------------------------|---------------------------------------|
| C1       | 0.8                   | (72, 63.15, 0.56)    | downwards         | 0.25                           | 313.15, 450                           |
| C2       | 1.6                   | (72, 63.15, 0.56)    | downwards         | 0.25                           | 313.15, 450                           |
| C3       | 8                     | (72, 63.19, 0.67)    | horizontal        | 0.25                           | 313.15, 450                           |



Compression building

#### Purification/Drying building

• Small leak (P1 scenario), pipeline rupture (P2 scenario)

| Scenario | Diameter of<br>leak (mm) | Leak position<br>(m) | Leak<br>direction | Stored H2<br>(m <sup>3</sup> ) | Temperature (K)<br>and pressure (bar) |
|----------|--------------------------|----------------------|-------------------|--------------------------------|---------------------------------------|
| P1       | 0.8                      | (71.5, 68.9, 0.55)   | downwards         | 0.5                            | 293.15, 4                             |
| P2       | 1.2                      | (71.5, 68.9, 0.54)   | horizontal        | 0.5                            | 293.15, 4                             |



Purification/Drying building

Dimensions of both buildings (in m):  $3 \times 7 \times 3$ 

Natural Ventilation (louvers), Mechanical Ventilation (fan in the middle of the ceiling, 150 ACH)







### NCSRD simulations – Confined scenarios

• Release calculations with GAJET: isentropic expansion of  $H_2$  from storage through the nozzle, assuming real  $H_2$  gas properties

• Source modeling: Birch approach for fictitious area calculation,  $H_2$  jet modeled as circular source with varying in time area based on the fictitious area and sonic velocity, atmospheric temperature and pressure



Purification/Drying building scenarios



Compression building scenarios

For C1 and P1 scenarios the release was constant until the  $H_2$  concentration at the fan exceeded 20% of LFL. Initial simulations showed that for C1 this time was 5 seconds whereas for P1,  $H_2$  concentration did not reach 20% of LFL for 1000 seconds. The EDS was assumed to be activated 10 seconds after 20% of LFL at the fan. Release conditions were adjusted accordingly.







#### **Confined Scenarios - Results**

| Scenario | Nozzle<br>diameter (mm) | Initial release<br>rate (g/s) | Release direction | Stored H <sub>2</sub> (m <sup>3</sup> ) | Pressure<br>(bar) | Ventilation<br>(ach) | Max. flammable<br>mixture volume (m <sup>3</sup> ) | Max. H2 mass in flammable cloud (kg) |
|----------|-------------------------|-------------------------------|-------------------|-----------------------------------------|-------------------|----------------------|----------------------------------------------------|--------------------------------------|
| C1       | 0.8                     | 11                            | Down              | 0.25                                    | 450               | 150                  | 26                                                 | 0.1                                  |
| C2       | 1.6                     | 45                            | Down              | 0.25                                    | 450               | 150                  | 58                                                 | 0.5                                  |
| C3       | 8                       | 1100                          | Horizontal        | 0.25                                    | 450               | 150                  | 57                                                 | 1.6                                  |
| P1       | 0.8                     | 0.14                          | Down              | 0.5                                     | 4                 | 150                  | 1.68 10 <sup>-3</sup>                              | 8.3 10-6                             |
| P2       | 1.2                     | 32                            | Horizontal        | 0.5                                     | 4                 | 150                  | 16                                                 | 9.8 10 <sup>-2</sup>                 |



• increase of release diameter or storage pressure increases maximum values of flammable mass and mixture volume

- residence time of flammable volume depends on the release flow-rate and duration
- ventilation was sufficient for P1 scenario







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

### **Confined Scenarios - Results**

#### LFL (4% by volume) H<sub>2</sub> cloud







C1 Scenario







# NCSRD simulations – Open/Semi-confined scenarios

- Storage Cabinet Scenarios
  - Small leak (ST1, ST2 scenarios), pipeline capture (ST3, ST4 scenarios)

| Scenario | Diameter of leak (mm) | Leak<br>direction | Stored<br>H2 (m <sup>3</sup> ) | Temperature (K) and pressure (bar) | Wind velocity<br>(m/s) |
|----------|-----------------------|-------------------|--------------------------------|------------------------------------|------------------------|
| ST1      | 0.8                   | downwards         | 0.1                            | 293.15, 450                        | 1.5                    |
| ST2      | 0.8                   | downwards         | 0.1                            | 293.15, 450                        | 5                      |
| ST3      | 8                     | horizontal        | 0.1                            | 293.15, 450                        | 1.5                    |
| ST4      | 8                     | horizontal        | 0.1                            | 293.15, 450                        | 5                      |



Storage Cabinet

Dimensions (in m):  $1 \times 1 \times 2$ , Vents of 0.1m height at the bottom and top



Storage Bank

#### Storage Bank Scenarios

• Large leak from 1 bank (S1, S2 scenarios) or 1 storage vessel (S3, S4 scenarios)

| Scenario   | Diameter of leak (mm) | Leak<br>direction | Stored<br>H2 (m <sup>3</sup> ) | Temperature (K) and pressure (bar) | Wind velocity<br>(m/s) |
|------------|-----------------------|-------------------|--------------------------------|------------------------------------|------------------------|
| S1         | 1.6                   | downwards         | 12.5                           | 293.15, 450                        | 1.5                    |
| S2         | 1.6                   | downwards         | 12.5                           | 293.15, 450                        | 5                      |
| <b>S</b> 3 | 1.6                   | downwards         | 2.5                            | 293.15, 450                        | 1.5                    |
| S4         | 1.6                   | downwards         | 2.5                            | 293.15, 450                        | 5                      |







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

# NCSRD simulations – Open/Semi-confined scenarios

#### Dispensers

Large leak from refueling hose (RF1, RF2 scenarios)

| Scenario | Diameter<br>of leak (m) | Leak<br>direction | H2 inventory<br>(m <sup>3</sup> ) | Temperature (K)<br>and pressure (bar) | Wind velocity<br>(m/s) |
|----------|-------------------------|-------------------|-----------------------------------|---------------------------------------|------------------------|
| RF1      | 0.0016                  | downwards         | 0.15                              | 293.15, 450                           | 1.5                    |
| RF2      | 0.0016                  | downwards         | 0.15                              | 293.15, 450                           | 5                      |

- Some approach for release calculations as in confined scenarios
- ST1, ST2 scenarios:  $H_2$  released smaller than maximum expected in pipeline  $\rightarrow$  constant release for necessary time to refill a car (70 sec) and then the pressure drop inside the filter was assumed enough to be detected  $\rightarrow$  decreasing release
- ST3, ST4 scenarios: pressure drop assumed to activate the ESD after 5 sec  $\rightarrow$  constant release for 5 sec followed by decreasing release
- RF1/RF2 scenarios: 60 sec needed from the operator to activate the ESD system, line closes 5 sec after activation  $\rightarrow$  constant release for 65 sec followed by a decreasing release



3<sup>rd</sup> International Conference on Hydrogen Safety • Congress Palace • Ajaccio, Corsica • 16-18 September 2009



Dispensers

65 seconds







# NCSRD simulations – Open/Semi-confined scenarios

- Dispersion calculations:
  - 3 consecutive modeling steps, each one providing initial conditions for the next
    - 1d (vertical) problem for undisturbed wind field
    - 3d steady state wind field
    - 3d transient dispersion









National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Desigr

#### **Open/Semi-confined scenarios - Results**









National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

#### **Open/Semi-confined scenarios - Results**



| Nozzle<br>diameter<br>(mm) | Scenarios                   | Maximum<br>flammable H <sub>2</sub><br>mass (kg) | Maximum<br>flammable mixture<br>volume (m3) | Maximum<br>horizontal distance<br>to LFL (m) | Maximum vertical<br>distance to LFL<br>(m) |
|----------------------------|-----------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|
| 8                          | ST3, ST4                    | 7                                                | 1000                                        | 35                                           | 17                                         |
| 1.6                        | S1, S2, S3, S4,<br>RF1, RF2 | 0.2                                              | 40                                          | 10                                           | <5                                         |
| 0.8                        | ST1, ST2                    | 0.05                                             | 10                                          | <10                                          | <5                                         |







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

### **Open/Semi-confined Scenarios - Results**

#### LFL (4% by volume) H<sub>2</sub> cloud



RF1 Scenario (1.5 m/s wind)



RF2 Scenario (5 m/s wind)







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

#### Evaluation of vulnerabilities

|               | UVCE                                     | Jet Fire                                                                          |
|---------------|------------------------------------------|-----------------------------------------------------------------------------------|
| Distance<br>1 | Pressure<br>30kPa<br>(100%<br>mortality) | Thermal<br>radiation<br>35kW/m <sup>2</sup> (100%<br>mortality)                   |
| Distance<br>2 | Pressure<br>10kPa<br>(2.5%<br>mortality) | Thermal<br>radiation<br>4.1kW/m <sup>2</sup> (1%<br>1 <sup>st</sup> degree burns) |



| ID         | SIMULATED<br>SEQUENCES       | Phenomenon | Frequency | Distance 1<br>(m) | Distance 2<br>(m) |
|------------|------------------------------|------------|-----------|-------------------|-------------------|
| <b>S</b> 1 | Large leak from the manifold | UVCE       | 3 E-6     | 25.3              | 37.5              |
| 51         | of one storage bank.         | Jet fire   | 1.5 E-5   | 4.5               | 5.55              |
| \$2        | Large leak from the manifold | UVCE       | 3 E-6     | 8.6               | 18.4              |
| 52         | of one storage bank.         | Jet fire   | 1.5 E-5   | 3.4               | 4.4               |
| \$3        | Large leak from one bottle.  | UVCE       | 3 E-4     | 25                | 37                |
|            |                              | Jet fire   | 1.5 E-3   | 4.44              | 5.45              |
| <b>S4</b>  | Large leak from one bottle.  | UVCE       | 3 E-4     | 5                 | 9.5               |
|            |                              | Jet fire   | 1.5 E-3   | 3.5               | 4.38              |
| 85         | Rupture in the valve of one  | UVCE       | 3 E-5     | 42                | 81                |
|            | bottle                       | Jet fire   | 1.5 E-4   | 22.5              | 24.4              |
| ST1        | Small leak in the storage    | UVCE       | 4.9 E-3   | 5.2               | 9.5               |
| 511        | cabinet                      | Jet fire   | 6.5 E-2   |                   |                   |
| ST2        | Small leak in the storage    | UVCE       | 4.9 E-3   | 6                 | 11.5              |
| ~          | cabinet                      | Jet fire   | 6.5 E-2   |                   |                   |
| ST3        | Rupture in the storage       | UVCE       | 3 E-5     | 26.6              | 44.7              |
| 510        | cabinet                      | Jet fire   | 2.2 E-6   |                   |                   |
| ST4        | Rupture in the storage       | UVCE       | 3 E-5     | 34                | 54                |
| 514        | cabinet                      | Jet fire   | 2.2 E-6   |                   |                   |
| RF1        | Large leak in the refuelling | UVCE       | 1 E-5     | 26                | 39                |
|            | hose                         | Jet fire   | 5 E-5     | 4.5               | 5.55              |
| RF2        | Large leak in the refuelling | UVCE       | 1 E-5     | 8                 | 16.7              |
| ICI 2      | hose                         | Jet fire   | 5 E-5     | 3.45              | 4.4               |







### Conclusions

- A joint UNIPI-NCSRD effort was undertaken for the risk assessment of the BBC-HyQRA HRS
- ADREA-HF for release and dispersion calculations was successfully applied for consequence assessment of the scenarios earlier identified by UNIPI
- Risk assessment parameters were found mainly increasing functions of release rate (nozzle diameter size and storage pressure) as expected







National Technical University of Athens School of Chemical Engineering Department of Process Analysis and Plant Design

#### Acknowledgements

The authors would like to thank the European Commission for funding of this work through the HYSAFE-NoE Project

**THANK YOU FOR YOUR ATTENTION !**