# EVALUATION OF OPTICAL AND SPECTROSCOPIC EXPERIMENTS OF HYDROGEN JET FIRES

A. Blanc

L. Deimling

N. Eisenreich

A. Kessler

G. Langer

V. Weiser

International Conference on Hydrogen Safety (ICHS3)

September 16-18, 2009; Ajaccio, Corsica, France







## Introduction

- On accidents hydrogen in pressurized closed vessels might release and may be mixed with air to generate hot flame jets on ignition in wide ranges of fuel/oxidizer compositions.
- Radiation of the hot species depending on <u>temperature</u> is a main effect to influence the surroundings and contribute to strong heat transfer.
- The radiative emission of hazardous fires and gas/liquid explosions is strongly variable in <u>time</u> by jets lasting till shut down or complete release and at short scales down to milliseconds.
- As investigated in the described experiments, a fully deployed hydrogen jet (un-reacted) generates an **explosion** when ignited and transfer to a **turbulent flame jet** expanding the volume of the original jet.
- A scanning analysis of the spectral flame radiation must record the <u>flame dimensions</u>, be fast enough to detect pre-reactions, transient phenomena, starting explosions, enable the understanding of propagation mechanisms as well as quenching or extinguishing mechanisms.
- In contrast to pressure effects, time and spectrally resolved radiation of fires and explosions is not investigated in a sufficient way.







### **Background: Emission of Heat Radiation of Hydrogen Free Jets**

To provide data for estimate heat radiation Q<sub>rad</sub> of hydrogen flames

$$Q_{rad}(t) = \varphi(t, y) A(t) \varepsilon(t, T, x, c_i) \sigma T(t)^4$$

- arphi View factor as function of (reference) shape, distance y (see text books on heat radiation)
- A Emitting area or projected area
- $\sigma = 5.67 \cdot 10^{-8} \ \Omega \ m^{-2} \ \mathrm{K}^{-4}$  Stefan-Boltzmann constant
- T effective emission temperature (combustion temperature)
- $\mathcal{E}$  Total emissivity as function of time, temperature Total emissivity can derived from spectral emissivity  $\epsilon(\lambda,T)$

 $\epsilon(\lambda,T)$  can be calculated using spectral emission modelling codes like RADCAL or ICT-BaM. Input parameter:

temperature T

- emitting path length x
- species concentration c<sub>i</sub>







 $\int_{\infty} \varepsilon(\lambda, T) L_{S}(\lambda, T) d\lambda$  $\varepsilon(T)$ 

#### Adiabatic Flame Temperature and main reaction species of the combustion of Hydrogen with air for various mixture ratios (calculated by ICT-Thermodynamic Code basing on ICT-DB)









# Intension

Investigation of a realistic hydrogen free jet regarding to emitted radiation

- Temperature
- Concentration
- Emitting area / volume
- Experiments were performed under the framework of HySafe in parallel to HYPER-experiments performed by HSL, Buxton
- Fraunhofer ICT used their equipment to visualise the jet fires by
  - fast video techniques
  - IR-cameras
  - fast scanning spectroscopy in the NIR/IR spectral region

Also refer:

- M. Royle (paper 200) for experimental set-up
- A. Kessler (paper 204) for imaging technologies







### **Experimental Set-up**











## Experimentals

The campaign consists of 23 jet experiments

- Tank Volume 1001 (2x50l)
- Initial tank pressure 20 MPa
- Nozzle diameters
  1.5 / 3.2 / 6.35 / 10 mm
- Initial mass flow
  40 / 160 / 450 / 670 g/s
- Ignition Point
- 160 / 220 / 250 / 300 / 400 cm behind orifice
- Ignition delay various









### **IR-Flame Contours**

Hyper21\_4.ptw (X 0...319 / Y 0...189)





#### Averaged flame contours







## **IR - Filter Wheel Spectrometer (designed and produced at ICT)**

- Wavelength: 1.6 µm to 14.5 µm
- Resolution: up to 150 Spectra/s (used in this campagne: 100 Spectra/s)
- Quantitative calibration with blackbody radiator in Wm<sup>-2</sup>µm<sup>-1</sup>sr<sup>-1</sup>
- Correction of atmospheric absorption using HITRAN database.
- Point of view: 160 nm. 300 mm and 400 mm behind orifice









# Methods of Spectroscopic Data analysis using ICT-BaM-Code

Computer code for generation and fitting of NIR/IR spectra (1-10  $\mu$ m):

- $\bullet$  band modelling based on single line group model, Curtis-Godson- approximation and tabulated data of  $\rm H_2O$  and  $\rm CO_2$
- based on data of

"Handbook of Infrared Radiation from Combustion Gases", NASA

- inhomogeneous gas mixtures of
- $H_2O$  (bands at 1.3, 1.8, 2.7 and 6.2  $\mu m)$
- $CO_2$  (bands at 2.7 and 4.3 µm)
- CO (band at 4.7 µm)
- NO (band at 5.4 µm)
- HCI (band at 3.5 µm)
- particles (e.g. soot)
- temperature range 300 >3000 K
- emission or transmission calculations
- single or multi-layer model of radiation transfer
- Fitting parameter:

Temperature concentration \* path length









### **Time resolved IR spectra**

Immediately after ignition: highest intensity emission  $\rightarrow$  expanding explosion

Then turbulent jet burning with stable emission



Series of IR spectra on the progress of the jet combustion with 100 spectra per second







# **Exemplary spectrum and ICT-BaM Fit**









#### **Evaluation with ICT-BaM code**



#### Temperatures and ratios of water/CO<sub>2</sub>, obtained by ICT-BaM code

**Naturally there are 0.058%**  $CO_2$  in atmospheric air.

 $H_2O/CO_2$  correlates with entrained air concentration in the free-jet.









#### Ratios of H<sub>2</sub>O/CO<sub>2</sub> related to water concentration and temperatures in the flame

By thermodynamic calculations these measured ratios can also be calculated in dependence of the temperature and water concentrations in the flame.









# Conclusion

A series of experiments of  $H_2$  jets were investigated with flow rates of 40 to 670 g/s achieving flame lengths from 3 to 10 m. The analysis of the spectroscopic results by modelling the bands of water and carbon dioxide result in the following conclusions:

- Fast scanning spectrometers and the ICT-BaM code enables a detailed analysis of a spot area as function of time
- Emission temperatures of the flame accumulate at <u>2000 K</u> reaching to 2300 K
- By comparison of spectral emission bands of water with CO<sub>2</sub> (by air entrainment) correlated with thermodynamic combustion calculation the concentration of water can be correlated simultaneously with temperature as function of time.
- Combustion seems to take place in the area of lean mixture ratios.
- A quantitative estimation of the total emitted radiation is only possible by a correlation of the flame contours assuming air entrainment according to the jet expansion on its length by using the ICT-BaM code. This evaluation is planned for the future.







