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University of _
18 ULsTER Phenomena of permeation

Permeation: overall process of a fluid crossing a membrane caused
by a pressure difference.

Particularly relevant to hydrogen due to its:
*High diffusivity;

«Small molecular size;

«Small molecular weight;

sLow viscosity.
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MULSTER Engineering correlations

The permeabilitylt! ¢ is expressed in mol/s/m/Pal’?:
¢ - permeability (mol/s/m/Pal/2)
R - perfect gases universal constant
¢=¢,-eXp(-E;/R-T) (83144 J/mol/K)
T - external temperature (K)
#, - pre-exponential factor (mol/s/m/Pal/?)
E , - activation energy (J/mol)

Material dependent
The rate of permeationl!! J is expressed in mol/s/m?:

J - permeation rate of hydrogen (mol/s/m2)

/ p ¢ - permeability of the material of the tank
J = ¢— (mol/s/m/Pal?)
L p - tank pressure (Pa) Container

L - tank wall thickness (m) | dependent

[Uschefer et al., IJHE, 2006, VVol.31, pp.1247-1260
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9] Uister  Goals of this study

=Safety concern with hydrogen permeation: The formation of
a flammable hydrogen-air mixture in closed space (e.g. a car in
a garage with type IV compressed hydrogen tank).

*HySAFER performed a simplified analysis to estimate:

» Hydrogen concentration on a tank surface as a function of
time;

» Hydrogen average concentration in an enclosure in
assumptions of fully sealed garage and uniform hydrogen
distribution.

*HySAFER performed a numerical study to clarify:
» The interplay between hydrogen diffusion and buoyancy;

» The distribution of permeated hydrogen with still air.

e
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N uistk  Case study

We choose a conservative approach for a tank in an assumed perfectly sealed
garage.

*The garage : 5 m long, 3 m wide, and 2.2 m high.

=The tank[?: 0.672 m long, 0.505 m diameter with two hemispherical ends with
diameter of 0.505 m, 0.5m above ground. (Area=A,, volume =V,)

=Rate of permeation: J=1.40x10-% mol-s1-m-2 or 1.14 NmL-hr-1-L-1, close to the value
of the draft of the UN ECE Regulation for type 1V containers (i.e 1.0 NmL-hr-1.L-1).

Al

v

5m A

2.2 m

[2IA. Sarkar, R. Banerjee, IJHE, 2005, Vol. 30, pp.867-877

————
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ULSTER |nitiation of leak

We use the Brownian Motion described by Einstein’s law3! to calculate the
“displacement of particles by diffusion in direction of the X-axis” .

— D is the diffusion coefficient of H, in air (m?.s1)
=VAX2 =42:D-1 ictime (s)

It was hence possible to calculate the hydrogen concentration in a volume close to
the tank’s surface as a function of time, considering only diffusion.

Assuming uniform distribution of hydrogen molecules, the hydrogen concentration
[H,]; after time t, is the ratio of the volume of hydrogen over the total volume:

JAV V.ot
H,], =100——=r =100~ x
[F:] J2DtA J2D Wt

The concentration on the surface increase with time as [H,], « +/t until the
buoyancy will overcome diffusion transport of hydrogen.

How to define this characteristic time?

BlEinstein, A. 1905, Annalen der Physik, vol. 17, pp. 549-560
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i uister Time to buoyancy

The idea is to define a characteristic time at which the displacement by buoyancy
overcomes the displacement by diffusion. The second Newton’s Law for buoyant
motion of hydrogen-air mixture of density p, .. in air of density p_,. can be written as:

[H, ],

100 ) (/OH2 ~ Pair )+ Pair

2L
F=ma= (pair _pmixt)g = Phixt t_2 Where Prixt =

The displacement by buoyancy is equal toL = KR, Pir -1/ g'zt

W (PH 2 = Pair )+ Pair

We can then calculate a time t, when the displacement of hydrogen by buoyancy
equals the displacement by diffusion A, =L:

2
/2°D°t= pair _1 g t

J-t-V, 2
2Dt (PHz _pair)+pair
At about 35 seconds, the displacement by buoyancy equals the displacement by

diffusion. The hydrogen concentration on the surface for that characteristic time is
2x10-3% vol.
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ULSTER Modelling permeation leak (1/7)

The hydrogen release was modelled using a tiny volumetric
source of hydrogen in a thin layer (two computational cell of 0.5
mm thickness) around the whole surface of tank. This is
different from modelling of permeation by artificial plumes/jets
with a mass fraction Y,,=1 at “release orifice” (our numerical
experiments confirmed that there is no layer Y,,=1 on the tank’s
surface).

To match the specified permeation rate, the volumetric source
term for hydrogen mass was S,,,=2.61x10% kg-m-3.s-1.

3D unsteady laminar flow

*SIMPLE algorithm, 3rd order MUSCL discretisation scheme for
convective terms, central difference for diffusion terms, 2nd
order implicit time stepping

*Time step: Dt=0.05s (max V=0.0215m/s, max Courant number
CFL=0.06, max cell Reynolds number Re~100)
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m ULSTER Modelling permeation leak (2/7)

A visible distortion of
the symmetrical
hydrogen layer on the
surface at the top of
the tank, at 80 s,
indicates the
buoyancy starts acting
on the hydrogen-air
mixture.
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uj ULSTER Modelling permeation leak (3/7)

Hydrogen concentration
distribution along three rakes

% Rake 01
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ULSTER Modelling permeation leak (4/7)

Rake01 Maximum H, concentration is on the
tank surface and <0.01% Vol.
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m fji\gﬁﬂ Modelling permeation leak (5/7)

Rake 02 Difference between top and bottom H,
concentration is about 0.002% Vol.
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ULSTER Modelling permeation leak (6/7)

Rake03 Difference between top and bottom H,
concentration is about 0.002% Vol.
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fj[”gﬁgﬂ Modelling permeation leak (7/7)

Ratio [H2] top / bottom against time
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Indicates the formation of a practically homogenous hydrogen-air
mixture within the enclosure over a long period of time. Identical
observation made with experiments in CEA garage facility with 1.8

NL/hr leak rate (compared with 0.2 NL/hr in our case)
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uster - Conclusion

*The used rate of permeation in our scenario does not seem to
represent a safety issue:
»Low concentration on surface and in garage, and quasi-uniform distribution,

»Assuming perfectly closed volume hydrogen concentration reaches 4% per
Vol. after 240 days,

»Assuming worst credible minimum air change per hour of 0,03 4= 0.02%
per Vol. maintained in the garage ® and,

»Assuming the presence of vents designed for natural ventilation to maintain
25% LFL - two vents of 2 cm by 2 cm are sufficient 6],

*Draft of the UN ECE Regulation is over-conservative.

[4I Deliverable 74, InsHyde Project, HySAFE
[5] L_ees, F.P., Loss Prevention in the Process Industry, 1996.
6] Barley et al., 2005, 1st ICHS
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- Biuster Further work

Further work would include

= |nvestigate safety issues of maximum allowable
permeation rates for other RC&S (SAE J2579:01 20009,
ISO/TS15869:2009),

= Assess more realistic scenario such as a tank in a
whole car in a garage,

= |nvestigate the influence of atmospheric conditions
(temperature, wind, etc.) on the distribution of hydrogen
In the garage and on the efficiency of ventilation and,

= |nvestigate the necessity of implementing mitigation
technologies in various types of private or public
garages
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