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ABSTRACT 

A non-equilibrium two-phase single-component critical (choked) flow model for cryogenic fluids is 

developed from first principle thermodynamics.  Modern equations-of-state (EOS) based upon the 

Helmholtz free energy concepts are incorporated into the methodology.  Extensive validation of the 

model is provided with the NASA cryogenic data tabulated for hydrogen, methane, nitrogen, and 

oxygen critical flow experiments performed with four different nozzles.  The model is used to develop 

a hydrogen critical flow map for stagnation states in the liquid and supercritical regions. 

1.0 INTRODUCTION 

The purpose of this report is to formulate a non-equilibrium, two-phase, critical flow model for 

cryogenic fluids based upon first principal thermodynamics.  The model can be used to accurately 

calculate discharge mass flow rates from high pressure reservoirs.  

2.0 MODERN EQUATIONS OF STATE 

Modern equations-of-state [1] are often formulated using the Helmholtz energy as the fundamental 

property with independent variables of temperature and density, 

( ) ( ) ( )0, , ,rT T Tα ρ α ρ α ρ= + ,             (1) 

where α is the Helmholtz energy, α0
(T,ρ) is the ideal gas contribution to the Helmholtz energy, and  

αr
(T,ρ) is the residual Helmholtz energy, which corresponds to the influence of intermolecular forces 

in real gases.  Thermodynamics properties can be calculated as derivatives of the Helmholtz energy.  

For example, the pressure can be expressed as 
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.               (2) 

In practical applications, the functional form is explicit in the dimensionless Helmholtz energy, α, 
using independent variables of dimensionless density and temperature.  The form of this equation is 

( ) ( ) ( ) ( )0,
, , ,rT

RT

α ρ
α τ δ α τ δ α τ δ= = +             (3) 

where τ = Tc/T, the inverse reduced temperature, δ = ρ/ρc, the reduced density and R is the universal 
gas constant (8.314510 J/(mol*K)). 

The ideal gas Helmholtz energy is often represented in the computational convenient parameterized 

form 
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and the residual contribution to the Helmholtz free energy takes the form 
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where the parameters and coefficients in these expressions are given for hydrogen (normal, 

parahydrogen and  orthohydrogen) [2], oxygen [3], nitrogen [4], methane [5], and water [6]. 

The advantages of this explicit formulation in the Helmholtz free energy become apparent for the 

calculation of enthalpy, entropy, and sound speed, respectively: 
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Other fluid properties can be found in references [1,7]. 

The saturation line can be described by the ancillary equation [1] for the saturated vapor-pressure, psat 

as 
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where pc is the critical pressure.  The derivative of the vapor-pressure, which shall be used later in this 

report, reads as follows: 
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Table 1 lists the critical constants and molecular weights for each of the substances that are addressed 

in this report.  
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Table 1.  Critical Properties and Molecular Weights for Hydrogen, Methane, Nitrogen, and Oxygen 

Fluid Pc              

(MPa) 

Tc                  

(K) 
ρc            

(kg/m
3
) 

M        

(kg/kmol) 

Hydrogen 1.2964 33.145 31.263 2.01588 

Methane 4.5992 190.564 162.66 16.0428 

Nitrogen 3.3958 126.192 313.300 28.01348 

Oxygen 5.043 154.581 436.1 31.9988 

 

3.0 CRITICAL DISCHARGE ANALYSIS FROM A HIGH PRESSURE RESERVOIR 

3.1 Single-phase choking of a pure substance 

The development starts with the differential form of the first law of thermodynamics 

dh Tds vdp= + ,             (11) 

and the control volume form of the conservation of energy 

2 2

0 0

1 1

2 2
h U h U+ = + .             (12) 

Assuming that the process is reversible and adiabatic (an isentropic process with ds = 0) then Eq. (11) 

can be integrated and combined with Eq. (12) to obtain the famous compressible Bernoulli Equation 

0

2 2

0

1 1

2 2

p

p

U U v dp− = ⋅∫             (13) 

The upsteam reservoir variables, the stagnation state, where the velocity is often assumed zero at 

location “0”, at any instant are considered in a quasi-steady-state, and as such, the velocity at the 

choked or critical location “t” can be expressed in terms of the integral along a streamline outside the 

boundary layer flow to yield 
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At location “t”, the critical discharge mass flux is then 
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The task is to find the maximum of this function, that is, to find the pressure, pt, such that the mass 

flux is maximum, which is the definition of the classical critical flow or choked condition, or should 

the maximum occur at the lowest pressure in the system, the flow is considered subcritical.  This 



4 

approach is referred to as the “Homogeneous Direct Integration” (HDI) method [8,9].  With the use of 

the above equation of state, it is straight forward to generate a table of paired pressure-density values 

from the stagnation state along an isentrope to a pressure less than the choked pressure (for example 

discharging into the atmosphere at 0.1 MPa) and perform the direct integration of Eq. (15).  The 

maximum value of the integration is found to be the critical discharge mass flux. 

An equivalent, but more rigorous methodology, which we name the “Homogeneous Direct 

Evaluation” (HDE) method, that directly exploits the equations-of-state discussed above, is to consider 

the energy equation (12) while neglecting the upstream velocity, i.e., U0 = 0, 

2

0
2

t
t

U
h h= + ,                    

which is arranged to the convenient general mass flux form 

( )
1

2
02G h hρ  = −  .               (16) 

As above, critical flow requires a local maximum of Eq. (16), or 0
t

G

p

 ∂
= ∂ 

.  When this condition is 

applied to Eq. (16) one obtains 
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 .            (17) 

From the first law of thermodynamics Eq. (1) 
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 ,             (18) 

and noting from the definition of sound speed squared 
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 ,           (19) 

one can combine Eqs. (17-19) to get 

( ) 2

02 t th h w− =              (20) 

It’s not surprising that the maximum velocity of a critical flow condition is the sound speed.   

The interesting fact is that by directly solving the coupled isentropic and critical flow conditions 
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for Tt and ρt, the exact critical flow state for the given stagnation condition is obtained.  The 

advantages of the HDE method over the HDI method are two:  1.  A table of paired density-pressures 

need not be created, and 2.  The local maximum mass flux need not be found using a search technique.  

The HDE method, by solving system (21), directly determines the exact critical mass flux condition. 

In the impressive work at NASA by Simoneau and Hendricks [10], four different nozzles were used to 

investigate choked flow for a number of cryogenic fluids (hydrogen, nitrogen and methane).  Gaseous 

nitrogen was used to calibrate the four nozzles, and a Table was presented with the results [10].  The 

same Table is presented here for completeness as well as to compare, in the last two columns, the 

HDE method, the solution of system (21), with the original Table results. 

Table 2.  NASA Table [10] for gaseous nitrogen with the proposed HDE model results in bold type 

added in the last two columns. 

Nozzle Stagnation 

Temperature 

(K) 

Stagnation 

pressure 

(N/cm2) 

Ratio of 

throat to 

stagnation 
pressure 

(measured) 

Ratio of 

throat to 

stagnation 
pressure 

(calculated) 

Maximum 

measured 

mass flux, 
Gmeas 

(g/cm2*s) 

 

Maximum 

calculated 

mass flux, 
Gcalc 

(g/cm2*s) 

 

Mass flux 

ratio 

Gmeas / 
Gcalc 

 

Proposed 

HDE 

model 

mass 

flux 

(g/cm2*s) 

Proposed 

HDE 

model 

throat to 

stagnation 

pressure 

7o concial 272 356 0.522 0.524 846 872 0.970 873 0.523 

3.5o 

concial 

276.5 351 0.537 0.524 820 852 0.962 853 0.523 

2D 284 343 0.565 0.524 790 820 0.963 821 0.523 

Elliptical 233 313 0.495 0.524 820 835 0.982 837 0.524 

 

The agreement is excellent between the HDE model and the NASA experiments for both critical mass 

flux and ratio of throat to stagnation pressure.  Note that the mass flux ratio is the effective discharge 

coefficient for each of the individual nozzles.  This discharge coefficient shall be applied in the two-

phase analysis described below. 

3.2 Two-phase choking of a pure substance 

The development of the two-phase methodology follows directly from the single-phase approach.  

There are a number of assumptions that should be noted:  1. The stagnation condition is a pure 

substance at saturated liquid, subcooled liquid, or supercritical such that an isentropic expansion from 

the stagnation state to the saturation line, the saturation locus, occurs through the compressed liquid 

region and not the superheated vapor side of the critical point.  This assumption is not very critical to 

the final results provided the stagnation state is supercritical and not superheated, but since we’re 

mostly interested in the liquid side, we state this condition, 2. The two-phase flow is homogeneous, 3.  

The two-phase flow is in mechanical equilibrium; that is, the phases have equal velocities.  The 

methodology could be extended into regimes with slip or relative velocity between the phase, but in 

our direct application (see below), the choked vapor volume fraction is usually less than 10%, so the 

mechanical coupling between the phases is large; and therefore, relative velocities small, 4.  The vapor 

phase is at saturation, 5.  The liquid phase may be in a metastable state (superheated state). 6.  The 

phases share a common pressure (the vapor saturation pressure), 7.  The mixture flow is adiabatic and 

frictionless; and therefore isentropic, and 8.  The discharge location has a short L/D ratio.  For 

example, one can imagine a rupture or puncture of a high pressure reservoir wall, or a short nozzle. 
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The HDE method applied to two-phase critical conditions requires two steps:  1. Expand from the 

stagnation conditions to the liquid saturation line, the saturation locus, (ss = s0, hs, Ts, ps, and ρs), and 2.  
Expand from the liquid saturation locus into the two-phase coexistence region. 

If the stagnation state is saturated liquid, step 1 is omitted.  It remains implicit in this two-step 

procedure that the maximum liquid superheat allowed for any vapor temperature less than TS is that 

the liquid temperature Tl = TS. 

The general pure substance two-phase relationships between various fluid properties and the quality, 

x, are introduced 

( ) ( )
( ) ( )
( ) ( )
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p v v l l v l
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ρ ρ

ρ ρ

ρ ρ

= ⋅ + − ⋅ = ⋅ + − ⋅

= ⋅ + − ⋅ = ⋅ + − ⋅

= ⋅ + − ⋅ = ⋅ + − ⋅

 .       (22) 

If one determines the temperature and density for each phase at the choke plane, then the problem is 

solved.  An analysis is presented below to determine those 4 properties. 

The two-phase mass flux equation, derived from the conservation of energy, is a direct extension of 

Eq. (16) with the enthalpy and specific volume states replace with two-phase conditions 
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2
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 = −              (23) 

The two-phase extension of system (21) governing the two-phase critical flow requires four equations 

in the four unknowns Tl, ρl, Tv, and ρv.  This system is:  (1) the conservation of energy, (2) the 
conservation of entropy, ds = 0, (3) the vapor component is saturated, and (4) both phases share the 

same pressure.  This system is written 
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where the squared two-phase sound speed can be written 
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2 22
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Making use of Eq. (19) for each phase results in 
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or in terms of the mass flux, G = ρw, 
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Should 0
s

x

p

 ∂
= ∂ 

, then the so called “frozen” mass flux or sound speed is defined, which for a 

homogeneous two-phase mixture in mechanical and thermal equilibrium is the maximum sound speed 

of the system.  The task now is to find the derivative of the quality with respect to pressure holding the 

system entropy constant.  This is accomplished by solving the system entropy in Eq. (22) for the 

quality 
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and performing the required differentiation yields 
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Taking sv and sl to be ( ),v v vs s T p=  and ( ),l l ls s T p= , respectively, and then writing the total 

differentials gives 
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Upon recognizing Maxwell’s fourth relationship 

pT
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ρ
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and the definition of the specific heat at constant pressure 

p

p

s
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one can write Eq. (30) 
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.           (33) 
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Note that the isobaric heat capacity, cp, and the volume expansivity, β, can be directly calculated from 
the EOS in section 2, respectively, as 
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.

  

Relating the liquid and vapor temperatures, by defining a “non-equilibrium” parameter, η , can be 
defined in the following manner: 

(1 )l S vT T Tη η= ⋅ + − ⋅ .            (34) 

As stated above, the maximum thermal non-equilibrium liquid superheat allowed is Tl = TS (the 

saturation locus from step 1 where the fluid is expanded to the liquid saturation line) when 1η = , and 

least superheat is Tl = Tv when 0η = .  The latter case, 0η = , defaults to the well know Homogeneous 

Equilibrium Model (HEM), that is with the mixture in both thermal and mechanical equilibrium.  This 

analysis provides all degrees of liquid superheat, from none, the HEM, to liquid temperatures at the 

saturation locus.  Principally because of Eq. (34) we’ve restricted, by assumption 1 of the model, to 

the liquid side of the critical point; otherwise, an assumption concerning metastable vapor, 

supercooled vapor, would be necessary, and where vapor volume fractions become greater than 0.5, 

mechanical equilibrium may not be valid as the vapor can accelerate more quickly than the liquid 

droplets. 

Differentiating Eq. (34) where the pressure is only a function of temperature on the saturation line, Eq. 

(10), Eq. (33) for the two distinct phases becomes 
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dT

c T

TTs

p dp T

dT

σ

σ

ρ

β ρ
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η

ρ

 
 

 ∂  = − + ∂   
 
 

 
 

 ∂  
= − + − ∂   

 
 

.         (35) 

The sound speed (26), or the mass flux based sound speed (27), can be computed knowing the four 

phasic unknowns of temperatures and densities along with Eqs (28), (29), (34) and (35).  The system 

of equations (24) is closed, and the details are reviewed here 
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.        (36) 

Note that the last two expressions are only used for convenience since they are not independent 

relationships; and therefore are already in terms of the four unknown variables. 

4.0 HDE MODEL VALIDATION 

The NASA cryogenic critical flow data [10,11] was used to validate the non-equilibrium, two-phase, 

critical flow model described by the system (36).  The results are shown for hydrogen [10], methane 

[10], nitrogen [10,11], and oxygen [11], respectively, in Figures 1-4.  The calculated values have been 

corrected with the discharge coefficient, the mass flux ratio, given in Table 2.  In each Figure, a T-S 

diagram insert is included to display the analyzed stagnation conditions.  The computed results appear 

to be consistently greater than the measured mass fluxes; but in the overall, the solution of system (36) 

provides very good agreement with the experimental data. 

7500 10000 12500 15000 17500 20000 22500 25000 27500 30000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

2 4 6 8

20

22

24

26

28

30

32

34

 NASA TP 1484 Hydrogen Critical Flow Data and the HDE Model

 

 1484 Elliptical Nozzle

 + - 10%

C
a
lc
u
la
te
d
 M
a
s
s
 F
lu
x
 [
k
g
/(
m
2
*s
)]

Measured Mass Flux [kg/(m
2
*s)]

 

 

 Entropy

 T
e
m
p
e
ra
tu
re

Liquid Saturation Line

 

Figure 1. HDE calculated critical mass fluxes and the NASA hydrogen data [10] 
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Figure 2. HDE calculated critical mass fluxes and the NASA methane data [10] 
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Figure 3. HDE calculated critical mass fluxes and the NASA nitrogen data [10, 11] 
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Figure 4. HDE calculated critical mass fluxes and the NASA oxygen data [11] 

5.0 HDE MODEL CALCULATED HYDROGEN CRITICAL MASS FLUXES 

The HDE model was used to develop a critical flow map for liquid and supercritical hydrogen.  

Stagnation conditions are shown in the inserted hydrogen T-S diagram (Figure 5), where the 

stagnation temperature, 026 40K T K≤ ≤ , and pressure, 0 6P MPa≤ , states are always in the single 

phase region with entropy, 0 criticalS S≤ .  After determining the mass flux from the critical flow map in 

Figure 5, one should correct it with the relevant discharge coefficient. 
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Figure 5. HDE calculated critical mass fluxes for hydrogen with stagnation states in the liquid and 

supercritical regions 



12 

6.0 CONCLUSIONS 

A homogeneous non-equilibrium, two-phase, critical flow model, the homogeneous direct evaluation 

model (HDE), has been developed from first principal thermodynamics and modern equation-of-state 

formulations.  The model has been validated with extensive cryogenic data involving liquid and 

supercritical hydrogen, methane, nitrogen, and oxygen.  A critical discharge flow map for hydrogen is 

presented that allows the reader a straightforward procedure to determine critical mass fluxes for a 

range of stagnation conditions. 
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