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ABSTRACT 
The acoustic to the parametric instability has been studied for H2-air mixtures at normal conditions. 
Two approaches for the investigation of the problem have been considered. The simplified analytical 
model proposed by Bychkov was selected initially. Its range of applicability resulted to be very 
restricted, and therefore, numerical solutions of the problem were taken into account. The results 
obtained were used to study the existence of spontaneous transition from the acoustic to the 
parametric instability for different fuel concentrations. Finally, the growth rate of the instabilities was 
numerically calculated for a set of typical mixtures for hydrogen safety 

NOMENCLATURE LISTING 
 
A Auxiliary variable Le Lewis number α Auxiliary variable 
a Auxiliary variable Ma Markstein number β Auxiliary variable 
B Auxiliary variable Pr Prandtl number γ Auxiliary variable 
C1 Auxiliary variable q Auxiliary variable δ Auxiliary variable 
C2 Auxiliary variable Tb Temp. comb. products ϑ  Dimensionless temp. 
CP Heat at constant pressure Tu Temp. reactants Θ Expansion ratio 
F Flame front Ua Vel. of the acoustic field κ Auxiliary variable 
ga Acceleration of gravity UL Laminar flame velocity λ Thermal conductivity 
H Auxiliary variable Y Auxiliary variable ρ density 
I Auxiliary variable z Auxiliary variable σ Growth rate 
J Auxiliary variable Ze Zeldovich number χ thermal diffusivity 
k Wavenumber   ω Frequency acoustic field 
L Laminar flame thickness   Ψ Auxiliary variable 
 

1 - INTRODUCTION 

Generation of pressure waves by a flame in closed volumes is well known phenomenon. The 
interaction between those waves and the surface of the flame is a feed-back process in which pressure 
wave intensity and heat released by the flame influence each other. Markstein [1] concluded that the 
coupling between the both phenomena was due to the variation of the flame surface produced by the 
mechanism described here. The alternative velocity field created by the pressure waves produces 
oscillations of the amplitude of the cellular structures existing in the flames. This variation of the 
surface alters, in turn, the total amount of fuel consumed and the heat released by the flame. 

Two different instabilities due to flame - pressure waves interaction have been identified [2]. In the 
acoustic instability (see [3]) the cellular structures of the flame front oscillate with the frequency of the 
acoustic alternative field. Two effects tend to muffle it. For large wavenumbers the instability is 
damped by diffusive processes. For small wavenumbers it is absorbed by the effect of gravity. The 
acoustic instability corresponds, for zero amplitude of the excitation velocity, to the Darrieus-Landau 
planar instability. For increased values of the alternative velocity [3], the acoustic instability has the 
notable property of being able to stabilize the Darrieus-Landau instabilty.  
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The acoustic instability is followed, for enhanced alternative velocity, by the parametric one. Under 
the later the growth rate is generally superior than in the acoustic case. The cellular structures of the 
flame oscillate with a frequency half of the acoustic, fact that was recognized by Markstein as the 
typical signal of the Kapitsa parametrically dumped pendulum, who consequently named so the 
instability. 

From the point of view of the prediction of the severity of an explosion, the gaseous mixtures can be 
classified in two groups [5]. If the two instabilities co-exist for some ranges of acoustic velocities, a 
planar flame front is never stable and the acoustic instability transform spontaneously into the 
parametric. If they do not co-exist for any range of acoustic velocities, the acoustic instability tends to 
suppress the Darrieus-Landau instability, the parametric instability regime is never reached and planar 
flame fronts are stable as long as the alternative velocity field exists.  

These two differentiate propagation regimes have been confirmed by the observations of Searby [8] 
and Aldredge and Killingsworth [7] who performed experiments with downwards propagating flames 
inside a cylindrical and an annular burner respectively. It was found that the flame propagation was 
divided in four differentiate stages. Just after ignition, the flame surface quickly became wrinkled due 
to the Darrieus-Landau instability and as the flame propagates further sound was generated. Due to 
the fundamental acoustic instability, these waves caused an attenuation of flame wrinkles. The 
Darrieus-Landau instability was suppressed and the flame became planar. Depending on whether the 
parametric and the acoustic instability coexist or not, the secondary parametric instability developed 
producing significant flame acceleration and the appearance of large organized pulsating cellular 
structures. In the final stage of development those coherent cellular structures were converted in 
incoherent flame surfaces fluctuations. 

Therefore, gaseous mixtures prone to the parametric instability may suffer, in closed chambers, a very 
significant acceleration of the flame propagation velocity. Especially for lean mixtures, this increase of 
the combustion rate will be very considerable. 

The mathematical treatment of the acoustic and parametric instabilities is based on the work of Pelce 
and Clavin [4], who obtained an equation for a perturbed flame front in a gravitational field. Based on 
those results, Searby and Rochwerger [5] managed to derive equations for the growth rate of the 
acoustic and parametric instability and were able to calculate the stability limits for both cases 
numerically. Some years later, Bychkov [6] simplified the previous formulation for the cases of small 
perturbation of a flame front and was able to obtain an analytical solution. 

In the present study, the mentioned methodologies were applied to find out which mixtures tend to the 
parametric instability and which ones not under the typical conditions for hydrogen safety. The ranges 
of frequency and amplitude of the acoustic waves where the instability exists were identified for 
different hydrogen concentrations under normal pressure and temperature. 

2 – ANALYSIS 

The stability of a gaseous mixture with respect to the acoustic and the parametric instability can be 
calculated utilizing the methodology contained in the references [6], [5]. Let the flame front be 
represented by the function F(x,t)=0 in a reference commoving with the flame front. The small 
perturbations of the front could be considered in the form F(x,t)=F(t)exp(ikx). Considering the 
problem linear, the second order differential equation (1) describes the evolution of small amplitude 
flame surface perturbations considering periodic velocity fluctuations normal to the flame front 

2
2 2

1 1 22 ( ) 0.L a a L
d F dFA U k B k g C F k U cos t C F U C Fk
dt dt

ω ω+ + − + =  (1) 

Where, 



3 

11 ,
1 1

A kL Ma Jθ θ
θ θ

⎛ − ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠      
( )2 1 ( ) ,

1
B kL Ma Jθ θ

θ
⎛ ⎞= + −⎜ ⎟+⎝ ⎠

 (2) 

1
1 1 ,
1 1

JC kL Maθ θ
θ θ
⎛ ⎞− ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠⎝ ⎠

 (3) 

( )2
1 1 (3 1) 2 2 ( 1) (2 1) ,
1 1 b

kLC Ma J Prh I Prθθ θ θ θ
θ θ

⎛ − ⎞⎛ ⎞= − + − − + − − −⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠
 (4) 

( ) ( ),u b uT T T Tϑ = − / −    ( ) ,u b uγ ρ ρ ρ= − /    
( ) ( ) ( )( ) ,

( )
uP

u u u

C
h

C

λ ϑ ρ ϑ χ ϑϑ
λ ϑ ρ χ

= =  (5) 

1

0
( ( ))bH h h dϑ ϑ= − ,∫     

1

0

( )
1 1 (1 )

hJ dγ ϑ ϑ
γ ϑγ γ

= ,
− + / −∫

     

1

0
( 1) ( ) ,I h dθ ϑ ϑ= − ∫  (6) 

( )
1

0

1 ( ) ( )1 .
2 1 (1 )

J h lnMa Ze Le dϑ ϑ ϑ
γ ϑγ γ

= − −
+ / −∫  (7) 

A very easy simplification may help to understand the meaning of the concept of stability. In the case 
ga=0 and Ua=0, the temporal part of the solution of equation (1) has the form F(t)=Y exp(σt) being Y a 
constant. Therefore, the planar flame front will be stable with respect to perturbations for all growth 
rates fulfilling Re(σ)<0 and unstable otherwise. In the more complex case under study, the solution is 
more complicated, see [12] (for Bychkov analysis f(t)=f1(t)+f2cos(ωt)) and [5] (see eq. (17)), but the 
concept remains. 

2.1-Bychkov analysis 

The analytical solutions obtained by Bychkov [12] were derived in the limit of high acoustic 
frequency and long wavelength flame surface perturbations. We will study whether the conditions to 
be fulfilled for their applicability are soundly satisfied. 

2.1.1-Acosutic instability 

In the case of the acoustic instability, for problems in which it is fulfilled that  

2 2
2

2 1,LC U k
Aω

 (8) 

1 1,
2

aC U k
Aω

 (9) 

1
2 1,aC g k

Aω
 (10) 

the growth rate admits an explicit solution [6], and σ  is directly,  
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2 22 2
2 2 1

1 22

( ) 1 .
2 4 2

aL L
L

C UB U k B U k kC k g C U kA A A A
σ

′ ⎛ ⎞
= − ± − + +⎜ ⎟

⎝ ⎠
 (11) 

Additionally, the border delimiting the instability region could be easily obtained,  

2
2

2 2 2
1 1

22 .a

l L

U CAg A
U C k U C

= − −
′

 (12) 

2.1.2-Parametic instability 

Analogously, in the cases that  

1 1,aC U k
Aω

 (13) 

the growth rate for the parametric instability can be calculated solving the implicit equation 

22 2 2
2 2

1 2 1
1 1 0.

2 2 2L L a LA A U kB kgC U kC k U C A U kBωσ σ ω σω ω
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + − + + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (14) 

And the line describing the border of the stable region is  

222 2
2 2 2 2 22

1 1 22 2
1

2 .
2

a
L L

L

UBC U A kgC U kCk
C U

ωω
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
− + + + = ⎜ ⎟

⎝ ⎠
 (15) 

2.1.3- Particularization for H2-Air mixtures in normal conditions  

The equations appearing in previous sections were particularized for H2-air mixtures at normal 
conditions. For every fuel concentration, the value of the molecular transport coefficient was obtained 
utilizing the molecular theory of gases [13]. The thermodynamic data was acquired using the JANAF 
tables [14]. The Lewis number of the mixture was calculated by means of the formulation proposed by 
Sun et al. [15]. Special care was taken to calculate the overall activation energy. The detailed 
chemistry scheme of Lutz [16] was coupled with the computer program Cantera [17] to obtain the 
induction time of the analyzed mixtures. This magnitude was then utilized to derivate the overall 
activation energy. The frequency of the acoustic perturbation ω, is a parameter which depends on the 
geometry of the particular problem to be addressed. The range of sizes of containers, tubes, deposits, 
etc. that practical safety assessments must cover is very wide. Typical examples would be from the 
analysis of combustion tubes (~0.1 m of radius) to nuclear power plants (~ 25. m radius). For the 
general purpose of our analysis, excitation frequencies from ω=20 to 4000 Hz could be considered, 
which respectively correspond, for stoichiometric mixtures, to containers, buildings, etc. of 20, to 0.1 
m of radius for the first harmonic. 

The particularization of the equations (8-10) and (13) for the whole range of concentrations is 
represented in Figure 1. The curves relative to the equations (8-10) represent the maximum value for 
the left hand side (rhs) of those equations in the whole range of wavenumbers in which the instability 
takes place. The curve corresponding to the equation (13) describes the maximum values of its left 
hand side in the analyzed interval of wavenumbers (0-4000 m-1). Out of the interval considered, the 
left hand side of the equation (13) is going to be even bigger, which substantiate the unusual shape of 
this curve. As can be seen in the figure, the values obtained for the left hand side of the equations (8) 
(9) and (13) for the H2-air mixture under analysis are of the order of magnitude of 1. Therefore, the 
assumptions considered by Bychkov in his analysis are not fulfilled for our particular problem.  



5 

0 20 40 60 80 100
% vol. of H2, [-]

0

0.1

0.2

0.3

0.4

0.5

Fa
ct

or
 v

al
ue

, [
-]

Factor eq. 13
Factor eq. 14
Factor eq. 15
Factor eq. 18

0

1.2

2.4

3.6

4.8

6

Fa
ct

or
 v

al
ue

, [
-]

 

Figure 1. Values for the left hand sides of equations (8-10, 13). For the eq. (8-10) apply the left 
vertical axis; for eq. (13) right ordinates axis. The condition that those values are much smaller than 
one represents the necessary requirement for the validity of the Bychkov analysis assumptions. The 

curves were obtained for an excitation of ω=1000 Hz. Smaller frequencies will increase the values to 
be represented. 

2.2-Numerical stability analysis 

The equation (1) may be transformed for a more convenient treatment. The change of variables 
,Aα = ,LU kBβ = 2 2

1 2 ,a Lkg C U Ckψ = + 1,ak U Cδ ω= allow writing the equation (1) as  

( )( )
2

2 0.d F dF cos t
dt dt

α β ψ δ ω+ + − =  (16) 

Which solution, as stated in [5], is of the kind 

( ) ,z ikyF Y z e eκ−=  (17) 

where the new variables are defined as, 12 ,z tω= ,κ βωα=  2 24a αψ β ω α= −  and 
22q δω α= . 

The solution (17) is then substituted in (16). A much simpler differential equation for the variable Y 
appears, 

( ) ( )2 2 0,Y a q cos z Y′′ + − =  (18) 

which is known as the Mathieu equation.  

2.2.1-Mathieu equation 

An extensive analysis of the solutions of the Mathieu equation may be found in [9]. Contrary to the 
procedure used by Searby and Rochwerger in [5], the Whittaker’s method [10] was selected to obtain 
the solutions. It considers a solution for the Mathieu equation of the type,  

2
2( ) .i z i kz

k
k

Y z e c eν
+∞

=−∞

= ∑  (19) 

Substituting this in (18), operating (details can be found in the references [12] and [11]) it is found that 
to be a solution, the variable ν  should fulfill the condition  
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( ) 1 (0 ) 1cos a q cos aπν π⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= − Δ , , −  (20) 

where  

2

2( 1) 2( 1)

2 2

0 0

2 2

2( 1) 2( 1)

2

1
1

1
( ) 1

1

1
1

k

k k

k k

k

a q k

γ
γ γ

γ γ
ν γ γ

γ γ

γ γ
γ

− −

− −

Δ , , , =  (21) 

with 2
2 (2 )k q k aγ ν= − − . The Sträng method [11] allow calculating (0 )a q kΔ , , ,  with the recursion 

formula,  

2
2 2 2 2 2( 1)(0 ) (0 1) (0 2) (0 3),k k k k ka q k a q k a q k a q kβ α β α α −Δ , , , = Δ , , , − − Δ , , , − + Δ , , , −  (22) 

with 2 2 2( 1)k k kα γ γ −=  and 2 21k kβ α= −  and ,q a∈ . This implies that 2i iγ ∈ ∀ ∈ , so that 

( )a q kνΔ , , , ∈ . Additionally, a∈  and so  

( ) 0
( ) ,

( ) 0

cos a a
cos a

cosh a a

π
π

π

⎧ ≥⎪= ⎨
<⎪⎩

 (23) 

is always real. We may nevertheless study the solutions of ,ν ∈  u wi u wν = + , , ∈ . Thus, 
( ( )) ( ) ( ) ( ) ( )cos i u wi cos u cosh w isin u sinh wπ π π π+ = −  and them  

( ) ( ) ( ) ( ) 1 (0 ) 1 .cos u cosh w isin u sinh w a q cos aπ π π π π⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− = −Δ , , −  (24) 

From the previous considerations,  

( ) ( ) 1 (0 ) 1 ,cos u cosh w a q cos aπ π π⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= −Δ , , −  (25) 

( ) ( ) 0.sin u sinh wπ π =  (26) 

The solutions of (26) are 0u kπ= + ; or 0.w =  So, ν  is purely real or complex. Therefore, the 
solutions of equation (25) are, if 0w =   

1 1 (0 ) 1 ,u acos a q cos aπ
π

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= − Δ , , −  (27) 

and if 0u kπ= + ,  
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( ) 1 (0 ) 1 ,cosh w a q cos aπ π
⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

= ± − Δ , , −  (28) 

and so,  

1 1 (0 ) 1 .w acosh a q cos aπ
π

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
= ± − Δ , , −  (29) 

Thus, if 1 (0 ) 1 1a q cos aπ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− Δ , , − ≤ , ν  (see eq. (19)) is real, and otherwise complex. Re-

calling the definition of the solution,  

( ) 2 2
2 2( ) .i u iw z i kz wz iuz i kz

k k
k k

Y z e c e e e c e
+∞ +∞

+ −

=−∞ =−∞

= =∑ ∑  (30) 

Substituting (19) in (17) 

2 ( ) ( ) 2
2 2( ) ,z iky wz iuz z iky i kz w z i uz ky i kz

k k
k k

F e e Y z e e e e c e e e c eκ κ κ
+∞ +∞

− − − − − +

=−∞ =−∞

= = =∑ ∑  (31) 

that is stable in the case .v κ− <  Due to the plus-minus solution of w eq. (29) it must happen that 
v κ<  and so, 

1 1 (0 ) 1 .acosh a q cos a βπ
π ωα

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
− Δ , , − <  (32) 

And additional and very interesting conclusion is that, for the cases 0κ < , the stability is impossible.  

2.2.2-Negative κ  

The definition of κ  was LU kB
A

κ
ω

= . The variables LU , k  and ω  are always positive. A, and B eq. 

(2) can be in principle positive or negative depending on the values of Ma, J, θ, L, and k. The 
Markstein number, because of the nature of the integrand can be written as 

( )
1

0

1 ( ) ( )1 .
1 2 1 ( 1)

h lnMa J Ze Le dθ ϑ ϑ ϑ
θ ϑ θ

= + −
− + −∫  (33) 

Applying (33) 

( )
1

0

1 1 ( ) ( )1 1 ,
1 2 1 ( 1)

h lnA kL Ze Le dθ ϑ ϑ ϑ
θ ϑ θ

⎛ ⎞⎛ ⎞−
= + −⎜ ⎟⎜ ⎟⎜ ⎟+ + −⎝ ⎠⎝ ⎠

∫  (34) 

( )
1 1

0 0

2 ( ) 1 ( ) ( )1 1 .
1 1 ( 1) 2 1 ( 1)

h h lnB kL d Ze Le dθ ϑ ϑ ϑθ ϑ ϑ
θ ϑ θ ϑ θ

⎛ ⎞⎛ ⎞
= + + −⎜ ⎟⎜ ⎟⎜ ⎟+ + − + −⎝ ⎠⎝ ⎠

∫ ∫  (35) 

Defining 0 Ak and 0 Bk  as the wavenumbers in which A and B change of sign (the condition 00 =Ak  
represents a resonance) 
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( )
0

1

0

1 ,
1 1 ( ) ( )1
1 2 1 ( 1)

Ak
h lnL Ze Le dθ ϑ ϑ ϑ

θ ϑ θ

−
=

⎛ ⎞−
−⎜ ⎟+ + −⎝ ⎠

∫
 (36) 

( )
0

1 1

0 0

1 .
( ) 1 ( ) ( )1

1 ( 1) 2 1 ( 1)

Bk
h h lnL d Ze Le dϑ ϑ ϑθ ϑ ϑ
ϑ θ ϑ θ

−
=

⎛ ⎞
+ −⎜ ⎟+ − + −⎝ ⎠

∫ ∫
 (37) 

Remark that 1Le−  is smaller than zero in case 1Le < . For those cases, for 0 Ak k>  the coefficient A 
is negative, being  

( )
1

0 0

1 ( ) ( )1 1 1 1 .
2 1 ( 1)A

h lnL Ze Le dk
ϑ ϑθ θ ϑ
ϑ θ

⎛ ⎞
= − − + −⎜ ⎟+ −⎝ ⎠

∫  (49) 

In the case that both 0 0,A Bk k +∈  there will exist a band of wavenumbers, if we suppose 0 0A Bk k<  
for wavenumbers k that are 0 00 A Bkk k< < < < +∞ , in which the flame is completely unstable. In the 

case only one of the values 0 Ak +∈  or 0Bk +∈ then the band will extend to the infinite. Note 
additionally that this interval 0 00 A Bkk k< < < < +∞  is independent of the value of the excitation 
frequency ω. 

The solutions in which the variable κ  is negative represent a significant instability mechanism. The 
gaseous mixtures in which 0κ <  result to be unstable for all intensities of the amplitude of the 
velocity perturbation for wavenumbers inside the range 0 0[ , ]A Bk k . Due to this characteristic, in the 
opinion of the authors, this mechanism may be very prone to couple with the perturbations produced 
by waves, reflections, etc., in practical applications. Additionally, κ  depend inversely on the 
frequency of the perturbation. Therefore, the greatest impact of the mentioned coupling mechanism 
would be for lean mixtures enclosed in big vessels. 
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Figure 2. Bands of complete instability for different concentrations for hydrogen air mixtures in 
normal conditions. 

2.2.3- Particularization for H2-Air mixtures in normal conditions  

The Figure 2 contains the particularization of the variables 0 0,A Bk k  for H2-air mixtures. It represent 
the limits in which the effect described in the previous section exists. For fuel concentrations superior 
to the 30% vol H2, those mixtures are free from the existence of resonance. For lean mixtures, the band 
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on instability is centered in relatively low wavenumbers, fact that enhances the implication of the 
effect (see also Figure 3 upper right). 

The Figure 3 contains the results of the application of the method for an excitation of 1000 Hz and 
normal conditions for fuel concentrations of 7.5, 12.5, 15., 30., 45., 60.% vol. H2. The diagrams 
represent the growth rate in a colour scale for different combinations of flame surface wavenumbers 
(abscissa) and reduced velocities (ordinate). Only positive growth rates are plotted. The stable regions 
(pairs (k,Ua/Sl) in which the growth rate σ is less or equal than 0) are plotted in violet. Black lines 
separate the stable regions from the unstable.  

 

 

 

Figure 3. Stability graphs for H2-air mixtures at normal conditions. Excitation frequency of 1000 Hz. 
From left to right and from top to bottom 7.5, 12.5, 15, 30, 45, 60 vol. H2. 
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In the diagram corresponding to 7.5% it is represented the situation in which both 0 0Bk =  (left) and 

0 0Ak =  (right, resonance) lines are visible (vertical lines). The stripe which lies between the lines is 
unstable. Left of this band appears a wavenumber range in which no positive growth rates are detected 
for the interval of reduced velocities considered. In the figure corresponding to 12.5 % H2 only a small 
part of the 0 0Bk = line is visible. The resonance lays in higher wavenumbers than the ones shown. 
Additionally, the acoustic instability (bottom left corner, still with a low growth rate) and the 
parametric instability (left) are clearly identifiable. The plots corresponding to 15% and 30% vol. H2 
show the appearance of the acoustic instability region with a growing intensity. Moreover, they depict 
a reduction of the overlap between the acoustic and the parametric instability. In the picture related to 
45% vol. H2, an horizontal stripe free of instability appears for intensities Ua/Sl of around 4.5. This 
band grows with an increased fuel concentration as it is shown in the plot for 60% vol. H2. The 
absence of overlapping between both instabilities is a very interesting phenomenon. It not only 
prevents the spontaneous developing of the acoustic instability in the parametric but tends to the 
suppression of the DL instability (as higher Ua/Sl values produce negative growth rates) 

Therefore, the thickness of the stripe free of any instability was investigated for perturbations of 
different frequencies and concentrations. The results obtained are plotted in the Figure 4. Some 
interesting conclusions can be obtained. Firstly, an enlarged perturbation frequency increases the 
thickness of the stability band. Also, higher perturbation frequencies enlarge the interval of 
concentrations in which the acoustic instability will not transform spontaneously into the parametric. 
In the extreme case of 20. Hz perturbations, no concentration interval resulted to be stable. This could 
be significant for the nuclear safety, in which the contention building, due to its size, will produce such 
order of magnitude of frequencies.  

The frequency of the perturbation also changes the whole structure of the instability region. The 
Figure 5 helps to understand the interesting and complex effect of the acoustic frequency. The 
stability diagrams for 20% vol. H2-air mixtures at normal conditions are depicted for six different 
frequencies of 20., 100., 200., 600., 1000., 4000. Hz. The diagram corresponding to 20. Hz shows a 
complex overlapping between the acoustic and the parametric instability. Additionally, shows that the 
different leafs of the parametric instability come one after another without any stability gap. For 
higher frequencies, 100. Hz and more, there is a fine gap of stable region between the parametric and 
the acoustic instability meaning that two differentiate regions already exist. A further increase of the 
frequency will cause the displacement of the lobe corresponding to the parametric instability to higher 
wavenumbers. This displacement is very intense for the highest frequency considered of 4000. Hz (~ 
10. cm wavelength for first harmonic in stoichiometric conditions). 
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Figure 4. Amplitude of the stability band between the acoustic and the parametric instability. 
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Figure 5. Stability graphs for 20% vol. H2-air mixtures at normal conditions. From left to right and 

from top to bottom excitation frequency of 20, 100, 200, 600, 1000, 4000 Hz. 

 
CONCLUSIONS 
 
The analytical solutions obtained by Bychkov, due to the assumptions considered in its obtaining, 
resulted to be not applicable for H2-air mixtures problems at normal conditions. The numerical 
analysis must then be used. The Mathieu differential equation, resulting from the derivation of this 
methodology, can be efficiently solved utilizing the Whittaker’s method and the Sträng’s formula. 
Utilizing this methodology, the stability of H2-air mixtures at normal conditions was studied. It was 
shown that for concentrations leaner than 30% vol. H2 the acoustic and the parametric instability 
always superposed. For richer mixtures, a stable gap between them that prevents a spontaneous 
transition from the former to the later appeared. The analysis was also performed for different 
excitation frequencies. It was found that, for small frequencies, the transition to parametric instability 
was unavoidable as the parametric and the acoustic instability superimposed in an intricate way. It 



12 

was ascertained that the thickness of the stability band increased with higher excitation frequencies. 
The results obtained show a very important dependency on concentration and excitation frequency that 
could be visualized in the diagrams plotted. 
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