
1 

 HIGH-ORDER PERTURBATION SOLUTIONS TO A LH2 SPREADING 

MODEL WITH CONTINUOUS SPILL  
 

Kim, M.
1
, Do, K.

2
, Choi, B.

3
, Han, Y.

4 
 

1
 Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials, 104 

Shinsung-no, Yusong, Daejeon, 305-343, South Korea, mbkim@kimm.re.kr 
2
 Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials, 104 

Shinsung-no, Yusong, Daejeon, 305-343, South Korea, kyudo@kimm.re.kr 
3
Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials, 104 

Shinsung-no, Yusong, Daejeon, 305-343, South Korea, cbisey@kimm.re.kr 
4
 Division of Plant Safety and Reliability, Korea Institute of Machinery & Materials, 104 

Shinsung-no, Yusong, Daejeon, 305-343, South Korea, yshan@kimm.re.kr 

 

 

ABSTRACT  

High-order perturbation solutions have been obtained for the simple physical model describing the 

LH2 spreading with a continuous spill, and are shown to improve over the first-order perturbation 

solutions. The non-dimensional governing equations for the model are derived to obtain more general 

solutions. Non-dimensional parameters are sought as the governing parameters for the non-

dimensional equations, and the non-dimensional evaporation rate is used as the perturbation 

parameter. The results show that the second-order solutions exhibit an improvement over the first-

order solutions with respect to the pool volume; however, there is still a difference between numerical 

solutions and second-order solutions in the late stage of spread. Finally, it is revealed that the third-

order solutions almost agree with numerical solutions. 

NOMENCLATURE 

E : evaporation rate per unit area (m/s) 

g : gravity (m/s
2
) 

H : pool height (m) 

h : dimensionless pool height 

L : characteristic length(m) 

R : pool radius (m) 

r : dimensionless pool radius 

T : time(s) 

t : dimensionless time 

V : pool volume(m
3
) 

V : dimensionless pool volume 

α : 2g∆ (m/s2)  

β : spill source rate(m3
/s) 

ε : dimensionless evaporation rate 
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∆ : 1 for spread on the ground and 1-ρ/ρw for spread on the water 

ρ : density of fluid(kg/m3
) 

ρw  : density of water(kg/m3
) 

τ : characteristic time (s) 

Subscripts 

i : initial value 

0 : zeroth-order term 

1 : first-order term 

2 :  second-order term 

3 : thirdt-order term 

1. INTRODUCTION 

The study of liquid pool spreading plays an essential role in the quantitative risk assessment of 

accidentally released cryogenic liquids, such as LNG and liquefied hydrogen because the spreading of 

such liquids is the first step in the development of multi-staged accident sequences leading to a major 

disaster. 

A number of numerical simulations have been performed for certain model equations governing the 

pool spread. Various types of governing equations, ranging from a simple physical model to the full 

Navier-Stokes equation[1], are available for numerical simulations. The model based on shallow layer 

equations[2-7] under the assumption of axisymmetry, solves for the velocity and pool height with 

respect to radius and time. The simplest mathematical model, which can be called the simple physical 

model[7] describes the pool spread in terms of how the pool radius and height evolve in time. The 

corresponding equations consist of two ordinary differential equations with respect to time and one 

algebraic equation. For the purpose of engineering design and analysis, however, the shallow layer 

model presents a problem in determining the size of the pool fire because the model allows the 

leading-edge wave to separate from the spreading pool to form an annulus. 

In this study, a set of third-order perturbation solutions are derived, as an improvement over  the 

previous first-order perturbation solutions[8], for the simple physical model describing the liquid pool 

spreading with a continuous spill. The third-order solutions are derived for the governing equations 

after introducing dimensionless governing parameters in order to obtain generic solutions. The 

normalized, dimensionless evaporation rate per unit area is used as the perturbation parameter. The 

results demonstrate that the second-order solutions exhibit an improvement over the first-order 

solutions with respect to the pool volume; however, the two types of perturbation solutions present 

nearly identical results for the pool radius. There is still difference between numerical solutions and 

second-order solutions for the pool volume in the late stage of spread even though second-order 

solutions improve over first-order solutions. Finally, it is revealed that the third-order solutions almost 

agree with numerical solutions for the pool volume. 

GOVERNING EQUATIONS 

Neglecting the surface tension and viscous drag, the driving force for the pool spread is gravity. 

Although this force acts downwards, it creates an unbalanced pressure distribution in the pool, causing 

the pool to spread laterally. Pool spread is governed by the following set of equations[7]: 
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H
dT

dR
α= ,                                                                                                                                           (1) 

where R - pool radius, m; T – time, s; α - 2g∆, m/s2; g - gravity, m/s2; ∆ - 1 for spills on the ground or 
1-ρ/ρw  for spills on water; ρ - density of liquid, kg/m3

; ρw - density of water, kg/m3
; H – pool height, 

m.  

βπ +−= 2RE
dT

dV
,                                                                                                                                (2) 

where V - pool volume, m
3
; E - evaporation rate per unit area, m/s; β - spill source rate, m3

/s. 

Therefore, for an instantaneous spill, β becomes zero. To complete the model, the following algebraic 
equation is required: 

2R

V
H

π
=                                                                                                                                                (3) 

Although surface tension and viscous drag are neglected in the present study, they are usually only 

important for spills of a high viscosity liquid like oil on water.  The effect of viscous drag can not be 

considered because cryogenic liquid spills vaporizes relatively quickly and rarely reach a gravity-
viscous regime of pool spread[7]. 

INITIAL CONDITIONS AND SOLUTIONS 

If the liquid is continuously released from storage, the following initial conditions can be used: 

0)0(0)0(,0)0( === HRV                                                                                                             (4) 

From Eq. 1 through 4 it is understood that the evaporation rate per unit area, E, and the spill source 

rate, β,  govern the model equations for the spread on the ground. For simplicity, the spread on the 
ground is considered in the present study. To make the governing equations dimensionless, the 

following variables are introduced: 

 
τπ
T

t
L

H
h

L

R
r

L

V
v ==== ,,,

3
,                                                                                                   (5) 

where v - dimensionless volume; r - dimensionless radius; h - dimensionless height; t - dimensionless 

time; τ  and L are  the characteristic time and length scale defined by: 

5/1
25/1

3
, 








=







=
α
β

α
β

τ L                                                                                                                  (6) 

Using the dimensionless variables in Eq. 5, the following non-dimensional governing equations are 

derived: 

21
r

dt

dv
ε

π
−= ,                                                                                                                                         (7)  

where ε - dimensionless evaporation rate, τE/L.  

h
dt

dr
=                                                                                                                                                 (8)    
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2r

v
h =                                                                                                                                                    (9) 

From Eq. 7 through 9 it can be seen that the dimensionless number, ε, corresponding to the 
dimensionless evaporation rate per unit area, is the unique parameter which can control the non-

dimensional governing equations. The initial conditions are  

0,0,0 === hrv    at    0=t                                                                                                          (10) 

The evaporation rate per unit area of LH2 on a paraffin wax ground[4] varies from about 4.23×10
-4 
m/s 

to about 12.7×10-4 m/s. Therefore, the dimensionless evaporation rate, ε, can be chosen as the 
perturbation parameter. The perturbation solutions can then be expressed in the following forms: 

3
3

2
2

10 vvvvv εεε +++= ,                                                                                                                  (11) 

where v0 - zeroth order term, v1 – 1st order term, v2 – 2nd order term, v3 – 3rd order term.  

3
3

2
2

10 rrrrr εεε +++= ,                                                                                                                   (12) 

where r0 - zeroth order term, r1 – 1st order term, r2 – 2nd order term, r3 – 3rd order term. 

3
3

2
2

10 hhhhh εεε +++= ,                                                                                                                (13) 

where h0 - zeroth order term, h1 – 1st order term, h2 – 2nd order term, h3 – 3rd order term.  

Terms higher than O(ε3) are omitted. In this study, a third-order expansion is used, and terms up to 
O(ε3) are retained. Substituting Eq. 11 through 13 into Eq. 7 through 9 and equating the coefficients of 
ε0, ε, ε2 and ε3 on both-hand sides, we obtain 

0
0 h
dt

dr
=                                                                                                                                            (14)  

0

11

2 h

h

dt

dr
=                                                                                                                                          (15) 

0

22

2 h

h

dt

dr
=                                                                                                                                         (16) 

0

33

2 h

h

dt

dr
=                                                                                                                                         (17) 

π
10 =

dt

dv
                                                                                                                                              (18) 

2
0

1 r
dt

dv
−=                                                                                                                                             (19) 

10
2 2 rr
dt

dv
−=                                                                                                                                        (20) 
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20
2
1

3 2 rrr
dt

dv
−−=                                                                                                                                (21) 

2
0

0
0

r

v
h =                                                                                                                                                 (22) 

2
0

1
1

r

v
h =                                                                                                                                                 (23) 

2
0

2
2

r

v
h =                                                                                                                                                (24) 

2
0

3
3

r

v
h =                                                                                                                                                (25) 

Twelve new equations (Eq. 14 through 25) have been obtained; therefore, the number of initial 

conditions must increase to twelve. Applying the conditions in Eq. 10 to Eq. 11 through 13 and 

equating the coefficients of ε0, ε  and etc. on both sides, we get 

0,0,0 000 === hrv    at   t=0                                                                                                       (26) 

0,0,0 111 === hrv    at   t=0                                                                                                        (27) 

0,0,0 222 === hrv    at   t=0                                                                                                       (28) 

0,0,0 333 === hrv    at   t=0                                                                                                       (29) 

Solving Eq. 14 through 25 with the initial conditions in Eq. 26 through 29 yields   

4/3

4/1

0

1

3

2
tr 







=
π

                                                                                                                             (30) 

4/94/1
1

135

38
tr π−=                                                                                                                               (31) 

4/154/3
2

2025

38
tr π=                                                                                                                              (32) 

4/214/5
3

280665

364
tr π=                                                                                                                          (33) 

And 

π
t

v =0                                                                                                                                                  (34) 

2/5
1

15

8
tv

π
−=                                                                                                                                  (35) 
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4
2

135

8
tv =                                                                                                                                            (36) 

211
3

13365

64
tv

π
−=                                                                                                                                  (37) 

t
h

1

4

3
0

π
=                                                                                                                                       (38) 

th
5

2
1 −=                                                                                                                                              (39) 

2/5
2

45

2
th

π
=                                                                                                                                      (40) 

4
3

4455

16
th

π
−=                                                                                                                                      (41)  

RESULTS AND DISCUSSION 

For the purpose of numerical evaluation, a spreading of LH2 on the paraffin wax with the values of E 

=4.2×10-4 m/s has been considered. The result[8] for the pool volume is shown in Fig. 1, in which the 
difference between the numerical solution and the first-order solution becomes evident in the late stage 

of spread when the time is large. This discrepancy comes from the secular terms[9] that lead to the 

non-uniform expansion when time is large. 
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Figure 1. The pool volume vs. time 
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From Eqs. 34 and 35, the first-order expansion for the dimensionless pool volume can be expressed as 

2/5

15

8
t

t
v

π
ε

π
−=                                                                                                                             (42) 

or in dimensional terms, 

2/5

15

8
TETV παββ −=                                                                                                                    (43) 

In Eq. 43, the second term should be much smaller than the first term because the second term has 

been introduced as the correction term for the first term. As time increases, however, the order of the 

correction term, O(ET
5/2
), approaches O(1). That is, the correction term becomes of the order of the 

main term for a large T. To address this anomaly, a uniform expansion would be adequate; however, it 

is beyond the scope of the present study. Instead, the higher order expansion has been pursued.  

The second-order and third-order solutions have been calculated for the spill source rate of 10
-2
 m

3
/s, 

10
0
 m

3
/s, and 10

2
 m

3
/s in order to explore the effect of the unique governing parameter on the 

solutions. In the case of the pool volume, as seen in Fig. 2-4, the second-order solutions exhibit an 

improvement over the first-order solutions; however, there are still differences between numerical 

solutions and second-order solutions in the late stage of spread. It can be known that third-order 

solutions approximate to the numerical solutions for all stages of spread. It is shown that the 

perturbation solutions generally allow for a change in the spill source rate. 
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Figure 2. Dimensionless volume vs. dimensionless time with β=10-2 m3
/s 
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Figure 3. Dimensionless volume vs. dimensionless time with β=100 m3
/s 
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Figure 4. Dimensionless volume vs. dimensionless time with β=102 m3
/s 

For the radius as can be seen in Fig. 5-7, the third-order and second order solutions are identical except 

the far late stage of spread when the time is very large. The high-order solutions display an 

improvement over the first-order solutions except the far late stage of spread and the three perturbation 
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solutions are indistinguishable in the early stage. There are still differences between numerical 

solutions and high-order solutions when the time is very large. Increase of the spill source rate, β, 
decreases the differences at the same time because increase of the spill source rate  decreases the non-

dimensional evaporation rate, ε, which leads to keep the correction terms(Eq. 31 to 33) small in spite 
of the relatively large values of time. The results also demonstrate that the high-order perturbation 

solutions readily accommodate the change in the unique parameter. 
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Figure 5. Dimensionless radius vs. dimensionless time with β=10-2 m3
/s 
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Figure 6. Dimensionless radius vs. dimensionless time with β=100 m3
/s 
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Figure 7. Dimensionless radius vs. dimensionless time with β=102 m3
/s 

The mathematical form of the spreading model is the nonlinear simultaneous differential equations. 

These equations were solved numerically in the past. However, the present study is to solve these 

equations analytically. Perturbation methods are used to solve the equations in this work. Using the 

mathematical techniques closed-form solutions that are mathematically complete can be obtained. 

Therefore it can be said that perturbation methods are quite different from generic numerical 
simulation.  

CONCLUSION 

The model equations for the spread of a liquid pool with continuous spill have been made 

dimensionless to reveal that these equations are governed by one parameter, namely, the 

dimensionless evaporation rate. It is noteworthy that the original governing equations, before being 

made dimensionless, contain two governing parameters instead of one.   

For the dimensionless governing equations, the high-order perturbation solutions are obtained. It is 

found that the second-order solutions moderately improve the first-order solutions with respect to the 

pool volume; however, there are still differences between numerical solutions and the second-order 

solutions in the late stage of spread. The third-order solutions approximate to the numerical solutions 

for all stages of spread. For the pool radius the third-order and second order solutions are identical 

except the far late stage of spread when the time is very large. The high-order solutions display an 

improvement over the first-order solutions except the far late stage of spread and the three perturbation 

solutions are indistinguishable in the early stage. There are still differences between numerical 

solutions and high-order solutions when the time is very large. All perturbation solutions readily 

accommodate changes in the unique parameter. It is found that the increase of the spill source rate can 

keep the correction terms of perturbation solutions small even if time increases. 
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