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antini�
ea.frABSTRACTIn this work we evaluate the 
onsequen
es of the 
ombustion of a stoi
hiometri
 mixture ofhydrogen-air on a me
hani
al devi
e whi
h 
an be 
onsidered as a long tube. In order to
hoose the most dangerous 
ombustion regime for the me
hani
al devi
e, we devote a parti
u-lar attention to the investigation of the 1D de�agration-to-detonation transition. Then, on
eestablished the most dangerous 
ombustion regime, we 
ompute the rea
ting �ow and thestress and strain in the me
hani
al devi
e. Analyses are performed using both semi-analyti
alsolutions and Europlexus, a 
omputer program for the simulation of �uid-stru
ture systemsunder transient dynami
 loading.1 Introdu
tionThe purpose of this work is to evaluate the 
onsequen
es of the 
ombustion of a stoi
hiometri
mixture of hydrogen-air on a me
hani
al devi
e. This me
hani
al devi
e 
an be 
onsideredas a long tube �lled with an irregular set of obsta
les with a negligible blo
k ratio. Amongstthe most dangerous 
ombustion regimes, we have to 
onsider the one in whi
h a de�agrationis initiated in one extremity of the tube and there is a detonation transition due to thepresen
e of obsta
les (or to the tube roughness); another dangerous regime is the detonationinitiation due to the sho
k re�e
tion at the other extremity. The distan
e between the pointof initiation of the de�agration and the point at whi
h the transition o

urs is 
alled run-updistan
e; its value depends on the nature of the mixture and the geometry [1℄. Sin
e therun-up distan
e in our devi
e is not known, we do not perform any hypothesis 
on
erning the
ombustion regime; instead, using a simpli�ed me
hani
al devi
e, we �nd the most 
riti
al
ombustion regime and then we verify if the tube integrity is guaranteed in this 
ombustionregime.The report is divided as follows. In Se
tion 2 we des
ribe the problem we deal with as well theway of modelling the problem. In Se
tion 3 we deeply dis
uss the de�agration-to-detonationtransition in a 
lose 1D geometry. Finally, in Se
tion 4 we brie�y present the result for most
riti
al 
ombustion regime a
ting on the me
hani
al devi
e. Con
lusion follows.2 ProblemWe 
onsider a 7 m tube with a 0.245 m inner radius. The left extremity is open and 
onne
tedto a large 
ontainment; the right extremity is 
losed and present an ellipsoidal shape . Thethi
kness of the tube is 
onstant and equal to 8.17 mm. As already mentioned, the tube is�lled with a stoi
hiometri
 mixture of hydrogen and air with P = 1.2 bar, T = 290 K. Wewant to investigate the e�e
ts of the hydrogen-air 
ombustion in this tube.
1
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Figure 1: Isotropi
 von Mises material. Stress-strain law.2.1 Choi
e of the initiation pointIf the extremities were both 
losed, the most dangerous initiation point would be at one ofthe extremities. Sin
e one extremity (the left one) is open, the initiation of the 
ombustionin this point is not so important. Indeed, the �ame is not a

elerated and the burnt gas ispushed outside from the tube. If the 
ombustion is initiated between the left and the rightextremity, we have two �ames propagating toward the two extremities, pre
eded by theirpre
ursor sho
k. On
e the left travelling pre
ursor sho
k rea
hes the left open extremity, ararefa
tion wave enters the domain and, if it rea
hes the right travelling �ame, it weakensthe �ame and then its pre
ursor sho
k. A more realisti
 
hoi
e of the initiation point is thenfun
tion of the �ame speed and the way in whi
h the 
ombustion o

urs. For this reason,
ons
ious of the fa
t that the pressure load thus determined will be more dangerous for thestru
ture than the real one, we 
hoose as initiation point the left extremity of the tube andwe suppose that this extremity is 
losed.2.2 Material propertiesCon
erning the tube, the material properties (in the order density, Poisson 
oe�
ient ν,Young modulus E, the elasti
 limit (elasti
 limit stress σ = (Rt
p0,2)min and elasti
 limit strain

ǫ = (Rt
p0,2)min/E) and the rupture limit (rupture limit stress σ = (Rm)min and rupture limitstrain ǫ = (At)min)) are given in the following table (for the meaning of these notations, one
an see [2℄).

ρ ν E (Rt
p0,2)min (Rt

p0,2)min/E (Rm)min (At)min7850. kg/m3 0.33 113.2E9 Pa 300E6 Pa 0.27% 502E6 Pa 20%The material obeys to the isotropi
 von Mises material law of Figure 1.As far as the gas is 
on
erned, we perform the same hypotheses as in [3℄: all the gases involved
an be 
onsidered thermally perfe
t; the 
hemi
al rea
tion governing the 
ombustion is aglobal 
hemi
al rea
tion and is supposed to be irreversible; we 
an negle
t vis
ous e�e
ts,thermal and spe
ies di�usion (the �ame is 
onsidered an in�nitely thin surfa
e (in�nitelyfast rea
tion) with a given fundamental speed).2.3 Choi
e of the initial 
ondition and modellingAs already mentioned, we do not know the regime at whi
h the 
ombustion o

urs; forthis reason, we must take into a

ount all the possible 
ombustion regimes. In order toavoid to perform a large number of multidimensional 
omputations (
omputations whi
h are2



ex
essively time 
onsuming if we want to provide mesh independent results), we pro
eed asfollows.1. We 
onsider di�erent 
ombustion regimes (investigated in Se
tion 3). As shown in the�gure below, in ea
h 
ase a 1D 
ombustion is initiated in the left side of the domainand we 
ompute the pressure as fun
tion of time on the right side of the domain (wherethe strongest re�e
tion o

urs). At this stage, we do not take into a

ount the tubedeformation.
P=P(t)Initiation point for the combustion2. Then, as shown in �gure below, we apply this pressure as fun
tion of time to an in�nite
ylinder in axisymmetri
 deformation with the same radius and the same materialproperties as the tube (i.e. we apply to the in�nite 
ylinder a time-dependent uniformload).

P=P(t)In this way, we 
an have an idea of whi
h kind of 
ombustion regime is more dangerousfor the devi
e. Moreover, we provide stresses and strains whi
h we expe
t to be largerthan the ones obtained in the me
hani
al devi
e, if we ex
lude the regions in whi
h we
an have strain 
on
entrations or in whi
h bending is important.3. Finally, on
e determined the most 
riti
al 
ombustion regime for the in�nite 
ylinder,we 
ompute the �ow inside the me
hani
al devi
e and the stress and strain due to su
h�ow. Note that at this stage we take into a

ount the e�e
ts of the deformation of thetube on the �ow (although in this parti
ular 
ase it is not sensibly important). We alsoemphasize that, at this stage, bending is taken into a

ount.In the following, the 
ombustion regime analysis is performed using both semi-analyti
alsolutions (obtained as in Se
tion 6.1 of [3℄) and numeri
al 
omputations; the numeri
al
omputations are performed using the Rea
tive Dis
rete Equation method, developed in [7℄to investigate the propagation of evaporation fronts and adapted in [3℄ to investigate the �amefront propagation. Se
ond order in spa
e and time is a
hieved using a predi
tor-
orre
torte
hnique presented in [8℄. The Rea
tive Dis
rete Equation method is implemented, in anArbitrary Lagrangian Eulerian approa
h, in the Europlexus 
ode [9℄, a 
omputer programfor the simulation of �uid-stru
ture systems under transient dynami
 loading. The �solid�tube is investigated using the Finite Element method, in whi
h the pressure load is given bythe gas �ow 
omputation; on the other hand, the inner part of the tube, whi
h representsthe border for the domain o

upied by the gas mixture, moves be
ause of the a
tion of thepressure. We emphasize that the 
omputations are realized using di�erently re�ned meshes(with a Courant number equal to 0.75), in order to verify the mesh independen
e of theprovided numeri
al results.3 1D de�agration-to-detonation transitionAll the analyses presented in this se
tion are based on the model of a 1D 
onstant speed�ame a
ting as a porous piston (see [1℄, Paragraph 1.2). This model (
alled �steady �ame�in [10℄, or �unsteady double dis
ontinuity� in Paragraph 1.2.2 of [1℄) is des
ribed Se
tion 3.1.3



By varying the �ame velo
ity, it is possible to explore all the 
ombustion regimes, fromthe slow de�agration to the detonation (see also Figure 6 in [1℄). This velo
ity is not thelaminar burning velo
ity, but an e�e
tive velo
ity, whi
h takes into a

ount that the �ow
an be turbulent and the �ame surfa
e is not plane. We pro
eed in this way be
ause adire
t modelling of the �ow in the real geometry is impossible, so we have to explore allthe 
ombustion regimes. At the same manner, sin
e we do not know where and how thede�agration-to-detonation o

urs, in Se
tion 3.2 we 
onsider the 
ase in whi
h the detona-tion o

urs instantaneously at the �ame; in Se
tion 3.3 we 
onsider the 
ase in whi
h thedetonation is initiated by the re�e
tion of the pre
ursor sho
k. As we will see, in the last
ase we generate an overdriven detonation (even if the wall is �xed).3.1 Steady de�agrationWe 
onsider a 
onstant (fundamental) speed de�agration wave moving in a 1D tube. Thesolution is fun
tion of
U = U(x, t; L, K0, P0, T0, Ru, Rb, cv,u(T ), cv,b(T ), h0

u − h0
b) (1)where U is the ve
tor of the 
onservative variables (densities of the single 
omponents,total momentum, total energy), x is the abs
issa (distan
e from the left extremity of thetube), t is the time last from the de�agration initiation, K0 is the fundamental speed, Lis the total length of the tube, P0 and T0 are the unperturbed 
onditions for the unburntmixture, Ru , Rb, cv,u, cv,b are respe
tively the gas 
onstant and the 
onstant volume spe
i�
heats 
apa
ities for the unburnt and burnt mixture1, (h0

u − h0
b) the di�eren
e between theformation enthalpies (evaluated at 0 K) for the unburnt and burnt mixture. Using thedimensionally-independent referen
e quantities P0, T0, L and Ru we obtain that the non-dimensional 
onservative variables 
an be written as fun
tion of
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(2)
with q = h0

u−h0
b being the 
hemi
al energy released per unit mass. Then the non-dimensionalsolution depends on the non-dimensional variables x̃ and t̃ and on 5 non-dimensional param-eters. Sin
e the gas mixture and the initial 
onditions are given, we have to investigate thesolution with respe
t to one parameter only, the ratio between the fundamental �ame speedand the referen
e speed.Before the intera
tion of the pre
ursor sho
k with the right wall, the solution is self similar.In Figures 2 we present di�erent 
ases: a weak de�agration wave (WDF, with K̃0 equal to0.5), some Chapman-Jouguet de�agrations (CJDF, with K̃0 equal to 0.6, 0.7, 0.85 and 1.1)and a Chapman-Jouguet detonation (CJDT, non sensibly di�erent from the CJDF with K̃0equal to 1.1). See Se
tion 6.1 of [3℄ for details.We emphasize that, in the 
ase K̃0 = 0.6 the temperature behind the pre
ursor sho
k isabout 880 K; in the 
ase K̃0 = 0.7 the temperature behind the pre
ursor sho
k is about

1000 K; in the 
ase K̃0 = 0.85 the temperature behind the pre
ursor sho
k is 1260 K2. It
ould be pointed out that a mixture of hydrogen-air spontaneously burns for temperatureslarger than 1000 K. In the 
ase K̃0 = 0.85, at the state behind the pre
ursor sho
k the delay1Stri
tly speaking, the spe
i�
 heats are not parameters but fun
tion of T . Often, these fun
tions are approximated usingtemperature polynomials. Then, if we use 4-th order temperature polynomials, ea
h cv involves 5 parameters.2As already mentioned, the referen
e value of the temperature is 290 K.4
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x̃/t̃Figure 2: 1D plane-symmetri
 steady �ame (�ow before the intera
tion of the pre
ursor sho
k with rightwall). P̃ and T̃ versus x̃/t̃ for di�erent values of K̃0. (Non-dimensional values).time of burning (τd) is of the order of 1 − 10 µs [4, 5℄. It follows that, when a �uid elementkeeps between the pre
ursor sho
k and the �ame for a time larger that the indu
tion time,it starts burning. It follows that, if we take τd = 10 µs, the maximum distan
e between thesho
k and the �ame is K0τd ≈ 2 mm; on
e this maximum distan
e is rea
hed, the �ameand the pre
ursor sho
k keeps 
oupled and we have a detonation transition at the �ame; i.e.the 
ase K̃0 = 0.85 
annot exist. Nevertheless, for the sake of 
ompleteness, we sometimesinvestigate de�agrations with K̃0 = 0.85.3.2 DDT at the �ameThe 
ombustion is initiated in the (
losed) left extremity of the tube (see Figure 3) andmoves forward with a fundamental speed equal to K0. At x = Ld we have the transition tothe detonation regime. A

ording to the dimensional analysis, sin
e the gas mixture and theinitial 
onditions are given, we have to investigate the solution with respe
t to two parametersonly, the non-dimensional fundamental �ame speed and the non-dimensional point at whi
hthe de�agration-to-detonation transition o

urs.3.2.1 In�nitely slow �ameIf K0/(
√

RuT0) ≈ 0, the dependen
e from this non-dimensional parameter 
an also be ne-gle
ted. In this 
ase the �ame behaves like an in�nitely slow permeable and adiabati
 piston,whi
h transfers mass from the unburnt region (index u in the following) to the burnt region(index b in the following) and does not ex
hange any heat by hypothesis (see Figure 4).We 
an distinguish between two stages: in the �rst stage, the �ame moves at slow speeduntil a 
ertain point; at this point, we postulate that the transition to detonation o

urs(se
ond stage). As the 
ombustion o

urs in the �rst stage, the pressure in the 
losed tubein
reases. Then, the transition to the detonation regime o

urs in a pre-
ompressed gas.That is, the longer the distan
e at whi
h the transition o

urs, the larger the maximumoverpressure. Conversely, the longer the distan
e at whi
h the transition o

urs, the lowerthe 
hara
teristi
 time at whi
h the overpressure a
ts on the tube walls. Sin
e the damageon a stru
ture depends both on the maximum overpressure and on the positive impulse, we
x

L−LdLdFigure 3: DDT at the �ame. The domain. The 
ombustion is initiated in the left extremity (blue point)and the transition to the detonation regime o

urs instantaneously at x = Ld (red point).5



ub δ
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q = 0Figure 4: DDT at the �ame. In�nitely slow moving �ame (in red), two region model. On the left, the burntregion (b). On the right, the unburnt region (u).
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tion of L̃d.expe
t an extremal value between the value L̃d = 0 and L̃d = 1 (in the 
ase L̃d ≈ 1 we havethe same 
onsequen
e as a slow AICC).Let us now des
ribe the governing equation in �rst stage. Sin
e the 
ombustion o

urs atlow speed, the pressure 
an be 
onsidered 
onstant in spa
e [6℄ (it in
reases as L̃d does).Then the equation of state gives
P = ρuRuTu = ρbRbTb. (3)The equations of 
onservation of the total mass and the total energy are
Ldρb + (L − Ld)ρu = Lρ0 (4)
(

Ldρb

∫ Tb

0

dτ {cv,b(τ)}
)

+

(

(L − Ld)ρu

∫ Tu

0

dτ {cv,u(τ)}
)

=

Lρ0

∫ T0

0

dτ {cv,u(τ)} + Ldρbq.

(5)Then, we have to 
onsider that in the unburnt mixture an isentropi
 
ompression o

urs, i.e.
0 = δq = cv,udTu −

P

ρ2
u

dρu, i.e. 0 =
1

γu(Tu) − 1

dTu

Tu
− dρu

ρu
(6)To 
on
lude we have to determine P , ρu, Tu, ρb and Tb (�ve unknowns) as fun
tion of Ldand we have �ve 
onditions (equations (3), (4), (5), (6)). In Figure 5 we present the burntand unburnt states as fun
tion of L̃d. As one 
an see, as L̃d = 1, the pressure rea
h the so
alled AICC values.On
e 
omputed the �rst stage, we 
ompute the detonating �ow (and the pressure a
ting onthe right wall) numeri
ally.3.2.2 Fast �ameBefore the intera
tion of the pre
ursor sho
k with the right wall, the solution is self similar.We 
onsider some of the 
ases presented in Se
tion 3.1; we do not take into a

ount the6




ases in whi
h the temperature behind the pre
ursor sho
k is higher than 1000 K (i.e. weonly 
onsider the 
ases with K̃0 equal to 0.5, 0.6, 0.7). Let us 
onsider the 
ase in whi
h thetransition o

urs su
h that the pre
ursor sho
k and the generated detonation rea
h the wall atthe same time. We 
all L̃d,foc this �
riti
al� value for L̃d (�fo
� stands for fo
using). This valuedepends on K̃0 and in
reases with K̃0. In the 
ase of the WDF with K̃0 = 0.5, Ld,foc ≈ 0.83.Let us present the pressure at di�erent times (see Figure 6). As the DDT develops at the�ame, the pressure in
reases and we have a CJDT travelling towards the right wall, whi
hfollows the right-travelling pre
ursor sho
k. At the same time, we have a weak left-travellingsho
k wave in the burnt gas. At t̃ ≈ 0.020 we have the intera
tion of both the pre
ursorsho
k and the CJDT with the right wall, whi
h 
reates a (non-dimensional) pressure of about
275 (see also Figure 7, in whi
h we represented the non-dimensional pressure as fun
tion of
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Figure 6: DDT at the �ame. K̃0 = 0.5. L̃d = L̃d,foc ≈ 0.83. Pressure P̃ as fun
tion of x̃ at di�erenttimes. The maximum pressure is rea
hed as the pre
ursor sho
k and the detonation wave are simultaneouslyre�e
ted by the right wall at t̃ ≈ .02 ; its value is about 275. (Non-dimensional values).7
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Figure 7: DDT at the �ame. Pressure P̃ as fun
tion of t̃ on the right extremity. (Non-dimensional values).the non-dimensional time in the right extremity); then the pressure de
reases be
ause of theintera
tion of the Taylor wave with the wall.In order to investigate the sensitivity analysis of the solution with respe
t to L̃d, we supposethat the the detonation transition o

urs at L̃d = 0.9L̃d,foc. In this 
ase, when the detonationrea
hes the pre
ursor sho
k and enter in the non-pre
ompressed region, sin
e the the �owbehind the Taylor wave is no more soni
 in the �ame frame, a new rarefa
tion wave isoriginated. This new Taylor wave weakens the detonation wave, until it rea
hes a newCJDT state (the CJDT state in the unperturbed mixture). The overpressure at the rightwall results to be lower than in the previous 
ase (see Figure 7). From a qualitative point ofview, we have the same behavior in the 
ases of CJDF with K̃0 = 0.6 and 0.7. Con
erningthe pressure as fun
tion of the time on the right extremity of the tube, for L̃d = L̃d,foc, if wein
rease K̃0 we in
rease the maximum overpressure but at the same time we de
reases thetime duration of the �rst re�e
tion.3.3 Detonation initiation due to the sho
k re�e
tionIt is well know that the re�e
tion of the pre
ursor sho
k 
an 
ause the initiation of a deto-nation wave (see for instan
e [11℄). Here we restri
t our attention to the 
ase of a pre
ursorsho
k generated by a steady �ame in a 1D plane geometry (Figure 2). A

ording to thedimensional analysis, sin
e the gas mixture and the initial 
onditions are given, we haveto investigate the solution with respe
t to one parameter only, i.e. K̃0, (non-dimensionalfundamental �ame speed).We take as initial time (t = 0) the instant in whi
h the �ame is generated in the left extremity.We 
an 
onsider three di�erent stages.1. Before the re�e
tion with the right extremity, the solution 
onsists in a steady �amesmoving at 
onstant speed.2. The impa
t of the pre
ursor sho
k with the wall o

urs at
timp =

L

Dsw

Dsw being the speed of the pre
ursor sho
k of a �ame moving with visible speed equalto D and fundamental speed equal to K0. We emphasize that the visible �ame speedis lower than the sho
k speed, namely D ≤ Dsw; the 
ase D = Dsw 
orresponds tothe 
ase of detonation. A

ording to the hypothesis here 
onsidered, the impa
t of thepre
ursor sho
k with the wall generates a detonation wave, moving with speed D′

CJDTtoward the in
oming �ame. The �ame-detonation intera
tion o

urs at t = timp + ∆t,with ∆t satisfying the following equation
(Dtimp) + (D∆t) = L − (D′

CJDT∆t), i.e ∆t̃ =
1

D̃sw

D̃sw

D̃
− 1

1 + D̃′
CJDT

D̃8



As one 
an see, if the right travelling �ame is a detonation wave, it is D̃ = D̃sw andstage 2 does not exists (∆t̃ = 0).3. The intera
tion of the right travelling �ame with the left travelling detonation wavegenerates a non rea
tive �ow (everything is already burnt) 
onsisting in left and righttravelling sho
k waves.The solution of the �ow in stages 1 and 2 
an be determined semi-analyti
ally (using thesame strategy as in Se
tion 6.1 of [3℄); then we 
ompute the non rea
tive �ow after theintera
tion between the right travelling �ame and the left travelling detonation.In general, we 
an say that the larger the visible �ame speed D̃ (or the fundamental speed
K̃0) in the stage 1, the stronger the pre
ursor sho
k, the stronger the (total) energy densitybetween the �ame and the pre
ursor sho
k, the lower the distan
e between the �ame and thepre
ursor sho
k. Then, the larger the visible �ame speed D̃, the stronger the left travellingdetonation wave. Moreover, the larger the fundamental �ame speed K̃0, the lower ∆̃t. Ifwe look for stru
ture damages, we expe
t that the worst 
ase is between the two extreme
ases K̃0 = 0 and K̃0 ≈ 1.1. As already mentioned in Se
tion 3.1, some of these 
ases 
anbe ex
luded from the fa
t that the temperature behind the pre
ursor sho
k 
annot be largerthan 1000 K, be
ause of the autoignition of the mixture. If K̃0 = 0.7, the temperaturebehind the pre
ursor sho
k is about 1000 K, so that this value 
ould be 
onsidered as aphysi
al border for our study. Nevertheless, for the sake of 
ompleteness, the 
ase K̃0 = 0.85(temperature behind the pre
ursor sho
k equal to 1200 K) will also be 
onsidered.In Figure 8 we present the solution in di�erent 
ases before the intera
tion between the lefttravelling detonation with the right travelling �ame (i.e. at the end of the stage 2). In the
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tion. Solution before the intera
tion of the lefttravelling detonation with the right travelling �ame. P̃ and T̃ versus x̃/t̃ for di�erent values of K̃0. On thebottom, logarithmi
 s
ale. (Non-dimensional values).
ase of K̃0 = 0.5, ∆̃t = 0.0169 and the (non-dimensional) CJDT pressure equal to 70; inthe CJDF 
ases, it is K̃0 = 0.6, 0.7, 0.85, ∆̃t = 0.0116, 0.00787, 0.00401 and the (non-dimensional) CJDT pressure equal to 95, 120, 170.We emphasize that the left travelling detonation wave 
an be in strong regime (SDT). Thisis due to the fa
t that it travels in a unburnt gas whi
h is not at rest but moves towardsthe right wall. It follows that, in a Galilean frame �xed with the unburnt gas, the right wallmoves toward the left, whi
h 
an generate a overdriven (strong) detonation. In the 
ases hererepresented, we have a CJDT detonation in the �rst 
ase (K̃0 = 0.5); but even in this 
asethe pressure behind the Taylor wave is 70.7 and the pressure in the CJDT state is 71.2 (i.e.the right extremity velo
ity in the unburnt gas frame is 
lose to the velo
ity in the CJDTstate). In the other 
ases the detonation is in the overdriven (strong) regime.In Figure 9 we present the pressure as fun
tion of the time on the right wall (here we takeas t = 0 the instant in whi
h there is the impa
t of the pre
ursor sho
k with the right wall).9



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

PSfrag repla
ements
K̃0 = 0.5

K̃0 = 0.6

K̃0 = 0.85

K̃0 = 0.7
P̃

t̃

 1

 10

 100

 1000

 0.0001  0.001  0.01  0.1  1  10

PSfrag repla
ements
K̃0 = 0.5

K̃0 = 0.6

K̃0 = 0.85

K̃0 = 0.7

P̃

t̃Figure 9: Detonation initiation due to the sho
k re�e
tion. P̃ versus t̃ on the right wall in di�erent 
ases.Here we take as t = 0 the instant in whi
h there is the impa
t of the pre
ursor sho
k with the right wall.(Non-dimensional values).As one 
an see (and as already mentioned before), the larger the value of K̃0, the larger themaximum overpressure, the lower the duration of the a
tion of this overpressure on the rightwall. Indeed, the maximum value 
orresponds to the burnt state behind the detonation wavegenerated by the pre
ursor sho
k re�e
tion. The value of ∆̃t de
reases as the �ame speedin
reases while the value of the pressure in the burnt region of the detonation in
reases asthe �ame speed in
reases. On
e the left travelling detonation wave intera
ts with the righttravelling �ame, we expe
t the generation of a left travelling sho
k and a right travellingde�agration wave, whi
h is responsible of the pressure de
reasing on the wall. As one 
ansee in Figure 8, the distan
e that the right travelling rarefa
tion wave has to last de
reaseswith K̃0 while its speed, the sound speed behind the detonation wave, in
reases with K̃0.This explains why the larger the value of K̃0, the lower the duration of the a
tion of thisoverpressure on the right wall.3.4 Comparison of the di�erent 
ombustion regimes (with the same fundamen-tal �ame speed)It is also interesting to 
ompare the di�erent 
ombustion regimes with the same value ofthe fundamental �ame speed. For the sake of brevity, we restri
t our attention to the 
ase
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K̃0 = 0.7 and t̃ < 0.03. In Figure 10 we represent, for this 
ase, the pressure P̃ as fun
tionof the time t̃ at the right extremity (t̃ = 0 
orresponds to the 
ase in whi
h the ��rst�sho
k intera
ts with the right extremity). As one 
an see, the 
ase of DDT at the �amewith simultaneous re�e
tion of the pre
ursor sho
k and the detonation at the right wall (i.e.
L̃d = L̃d,foc) presents both the maximum overpressure and the maximum positive impulse.From a qualitative point of view, this 
ase seems to be the most dangerous from a me
hani
alpoint of view. Nevertheless, the best way to 
ompare all this 
ases is to analyze their a
tionover the me
hani
al stru
ture we have to deal with.4 Fluid-stru
ture intera
tion4.1 In�nite 
ylinder investigationIf we 
onsider the in�nite 
ylinder in elasti
 regime, the �rst frequen
y is

f =
1

2πR

√

E

ρ(1 − ν2)
≈ 2613 Hzi.e. the �rst period is 0.383 ms. The time we use to non-dimensionalize the results of Se
tion 3(i.e. the unit time in the �gures of Se
tion 3) is L/

√
RuT0, i.e. 24.2 ms; then the �rst period is0.015 times L/

√
RuT0. It follows that the 
hara
teristi
 time for the stru
ture has the sameorder of magnitude of the 
hara
teristi
 times of the loads a
ting on the right extremity,whi
h are represented in Figure 10. This implies that, from a me
hani
al point of view, wehave to perform a dynami
 analysis of the devi
e. Then, as mention in Se
tion 2.3, point2, we apply the loads obtained in the right extremity of the tube to the in�nite 
ylinder.In the 
ase of re�e
tion of a 
onstant speed de�agration wave, the maximum deformation(strain ǫ) is 1.3% (plasti
 region of Figure 1) and o

urs for K̃0 = 0.7. In the 
ase of �slowde�agration�-to-detonation transition at the �ame, the maximum deformation is 0.5% ando

urs as the detonation transition o

urs at L̃d = 0.85. In the 
ase of �fast de�agration�-to-detonation transition at the �ame, the maximum deformation is 3.7% and 
orresponds to the
ase K̃0 = 0.5 and L̃d = 0.9L̃d,foc (the detonation transition o

urs su
h that the pre
ursorsho
k of the �ame and the detonation wave rea
h the right wall at the same time). Finally,in 
ase of detonation initiation due to the sho
k re�e
tion at the right wall, we obtain amaximum deformation of 1.2 % 
orresponding to K̃0 = 0.7.4.2 Me
hani
al devi
e investigationA

ording to these results, using Europlexus, in the me
hani
al devi
e we 
ompute a DDT,namely a detonation in whi
h the initial 
ondition 
orresponds to a de�agration wave with

K̃0 = 0.5, su
h that the pre
ursor sho
k of the de�agration and the detonation wave arrivesat the right wall at the same time. In this 
ase we obtained almost everywhere a plasti
deformation lower than 3.7% ex
ept in the the jun
tion between the the ellipse and the
ylinder. Here the plasti
 deformation be
omes about 19%.5 Con
lusionA

ording the hypotheses here performed, we have evaluated the stress and strain in ame
hani
al devi
e subje
ted to di�erent 
ombustion regimes, in parti
ular to a de�agration-to-detonation transition in whi
h the pre
ursor sho
k of the de�agration and the detonationare simultaneously re�e
ted by the wall opposite to the region in whi
h the de�agration isinitiated. 11



In order to provide a

urate results, several hypotheses have been performed, whi
h alwaysmaximize the pressure load a
ting on the me
hani
al devi
e. For instan
e, we have supposedthat the left extremity of the devi
e is 
losed, while in the reality it is open. This in
reasesthe e�e
ts of the pressure load on the me
hani
al devi
e.We emphasize that this 
ombustion regime is quite theoreti
al (�ame speed of the de�agra-tion high, simultaneous re�e
tion of the detonation and the de�agration pre
ursor sho
k).We 
ould provide more realisti
 loads, if we knew some physi
al quantities, like the �amespeed and the so-
alled run-up distan
e; nevertheless the only way of having these quantitiesis to perform (physi
al) experiments on the 
onsidered geometry.A
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