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ABSTRACT

The Reactive Discrete Equation Method (RDEM) was recently introduced in [1, 2|, adapted
to combustion modelling in [3] and implemented in the TONUS code [4]. The method has two
major features: the combustion constant having velocity dimension is the fundamental flame
speed, and the combustion wave now is an integrable part of the Reactive Riemann Problem.
In the present report the RDEM method is applied to the simulation of the combustion Test
13H performed in the ENACCEF facility. Two types of computations have been considered:
one with a constant fundamental flame speed, the other - with time dependent fundamental
flame speed. It is shown that by using the latter technique we can reproduce the experimental
visible flame velocity. The ratio between the fundamental flame speed and the laminar flame
speed takes, however, very large values compared to the experimental data based on the
tests performed in spherical bombs or cruciform burner.

1 Introduction

During anticipated accidents in buildings containing hydrogen fueled equipment, hydrogen
gas can be continuously or instantaneously released into the surroundings. This can happen,
for example, in a public or private garage through faulty valves or seals of a hydrogen tank, or
following a vehicle accident in a tunnel. Depending on the local concentration and/or pres-
ence and activation of mitigation devices, hydrogen may burn following different combustion
regimes. These regimes may include jet fires, slow deflagrations, fast deflagrations and det-
onations depending on the combustion process development. Thus, one has to estimate the
severity of a combustion process under given geometrical configuration, scale and compo-
sition of combustible mixture. Here the issue is not to predict details of turbulent flame
structure and propagation, but rather to evaluate the possible flame speeds and the corre-
sponding dynamic pressure loadings which might be generated during combustion. These
data then can be used in structural analysis codes to verify the integrity of the structure.
A number of studies on hydrogen combustion in industrial-type geometries has been per-
formed previously using the CREBCOM (CRiteria and Experimentally Based COmbustion
Model) [5]. This model, developed at the Kurchatov Institute, is devoted to study of combus-
tion in geometries which are much larger than the characteristic dimensions of the physical
phenomena involved. Thermal conduction and species diffusion, which are responsible for
the propagation of deflagrations, are not directly modelled; their action is taken into account
by introducing an experimentally derived correlation source term into the Euler equations.
The model has been successfully implemented in several industrial purpose CFD codes, in-
cluding TONUS code 4] and COM3D code 6] to investigate turbulent combustion flows. It
suffers, however, from two main drawbacks:

e a burning rate constant, present in the source term of Euler equations, has the dimen-
sions of a speed. This speed is correlated to the fundamental flame speed, and the
correlations are grid-, and problem-dependent |7].

e the algorithm involves a binary criterion function that specifies when a control volume
is to be burnt. Numerical experiments have shown that, as the flame speed is low with



respect to the speed of sound, the criterion function can create numerical oscillations
in the pressure that strongly affect the flow [8].

In the literature there exist several other approaches that model flames as interfaces. Some
of them, like the RDEM approach, require the solution of the reactive Riemann problem
between the burnt and unburnt regions. The solution of the Riemann problem for the
reactive Euler equations is the object of [9] in the particular case of calorically perfect
gases, under the hypothesis of weak deflagration, Chapman-Jouguet deflagration, Chapman-
Jouguet detonation or strong detonation regimes. Unfortunately, the eventual existence of a
rarefaction wave (Taylor wave) behind the Chapman-Jouguet deflagration is not taken into
account in the work, which makes impossible the modelling of the deflagration-to-detonation
transition in a continuous way. In [3], the existence of the Taylor wave behind a Chapman-
Jouguet deflagration is taken into account; moreover the variation of the specific heats with
temperature is considered.

In the present paper the RDEM method is applied to the simulation of the combustion Test
13H performed in the ENACCEF facility. The paper is organized as follows. After this
introduction, in Section 2 we give a general description of the ENACCEF facility as well as
the analysis of the Test 13H experimental data. In Section 3 we briefly present the governing
equations and the underlying hypothesis; the way the equations are discretized is discussed
in Section 4. Presentation and analysis of the computed results is given in Section 5. The
final conclusions make the subject of Section 6.

2 ENACCEF Test 13H: General Description and Analysis

2.1 Test Facility: Description and Geometrical Data [10]

ENACCEF (ENceinte d’ACCElération de Flamme) is located at the Laboratoire Combus-
tion et Systéme Réactive (LCRS) of Institut de Combustion Aérothermique Réactivité et
Environnement (ICARE) of Orleans. View of ENACCEF facility together with the sketch
of different parts are presented on Fig. 1. The facility is 5 m of height and is made of
Z3CN18-10 stainless steel. It is divided into two parts:

e the acceleration tube (3.2 m long and 154 mm i.d.), in which repeated obstacles of
various geometries can be inserted;

e the dome (1.7 m long, 738 mm i.d.).

The acceleration tube is equipped with two tungsten electrodes at 0.138 m from the bottom
of the facility as a low-energy ignition device. The energy delivered is estimated to be around
10-20 mJ. Different obstacles of varying blockage ratio can be installed inside the tube. For
the test, which we shall describe in the next subsection, nine annular obstacles of blockage
ratio 0.63 have been installed in the acceleration tube; the first one being 0.638 m from the
ignition point, and the distance between obstacles was fixed to 0.154 m.

ENACCEF facility is highly instrumented to follow the flame propagation: 16 UV-sensitive
photomultiplier tubes (HAMAMATSU, 1P28) are mounted across silica windows (optical
diameter: 8 mm, thickness: 3 mm) in order to detect the flame as it propagates (5 photo-
multiplier tubes are located along the dome and 11 - along the acceleration tube).

Several high speed pressure transducers, (7 from CHIMIE METAL, 1 PCB and 1 KISTLER)
are mounted flush with the inner surface of the tube in order to monitor the pressure variation
in the tube as the flame propagates, and the pressure buildup is monitored via a Kistler
pressure transducer mounted at the ceiling of the dome. Gas sampling is used to measure
the gas composition along the facility. Five gas samplings are located along the acceleration
tube and one - in the dome.
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Figure 1: View of ENACCEF facility (left) and sketch of its different parts (right). Scanned from [10].

2.2 Test 13H: Initial Conditions

The ENACCEF Test 13H on hydrogen combustion has been dedicated to a homogeneous
gas distribution in a containment volume. The initial gas mixture composition and thermo-
dynamic conditions are: Pj,; = 10° Pa, Tyas—init. = 298 K; Xp, = 0.13, and Xy;, = 0.87.
The gases are provided by Air Liquid. The purity of hydrogen is 99.999 %. The air used in
the experiment is the mixture of nitrogen and oxygen with the proportion: (80% Ny + 20%
02) [10].

2.3 Test 13H: Flame Velocity and Pressure Measurements.

Experimental flame velocity is computed using the flame arrival times at the consecutive
photomultipliers and the distance between them. Using the simple linear formula the flame
velocities were computed for 24 runs, and are represented at the points which are mean
positions between consecutive photomultipliers locations on the Fig. 2 (left). The error bars
show flame velocity spread at each location. The measured flame velocities in the dome area
are not shown here due to rather large spread. In fact, if the flame front is highly disturbed
and presents a 3D structure with rolls, the flame position will be less precise as the detectors
collect light along a solid angle and not at a line of sight. This, together with a larger solid
angle, presents a problem of flame velocity measurements in the dome.

Three phases of flame propagation inside the acceleration tube can be clearly distinguished:

e low flame velocity, equal to about 15-20 m/s at the initial, non-obstructed part of the
acceleration tube;

e strong flame acceleration up to 500-600 m/s in the obstructed area;
e flame deceleration down to 300-400 m/s in the upper non-obstructed part.

On the Fig. 2 (right) we present the pressure evolution with time measured with Kistler
transducer located at the top of the dome. The pressure evolution measured by Kistler trans-
ducer is close to the Adiabatic Isochoric Complete Combustion (AICC) value for overpressure
of 4.0772 bar.
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Figure 2: Averaged experimental flame velocities in the acceleration tube. Vertical error bars represent
standard deviation of the velocity data point based on multiple tests (left), and experimental over-pressure
at the top of the dome (right).

The pressure is close to the initial value during initial 60 ms and then starts to rise upto
AICC values. It should be noted that the volume ratio between the acceleration tube and
the dome is 1 : 12.2. During the flame propagation along the acceleration tube only small
fraction of hydrogen is burnt and some part of it is vented into the dome. Due to large
volume ratios this does not lead to a noticeable pressure increase in the dome. It is when
the flame develops inside the dome, we observe the rapid pressure rise. This is confirmed
by looking at the flame time of arrival in the dome, more precisely, at the location 14 ¢m
higher than the upper rim of the acceleration tube. The time of arrival oscillates around 40
ms which is about 20 ms before the beginning of pressure rise.

3 Physical modelling

In this section we present the governing equations we are going to solve together with the
underlying hypotheses. The more detailed explanation and hypotheses justification can be
found in [3].

We restrict our attention to ideal gas mixtures. The chemical evolution is assumed to be
governed by one irreversible, infinitely fast chemical reaction between hydrogen and oxygen
H, + %()2 — Hy0O. We do not take into account the thermal diffusivity and the species
diffusion.

The molar and mass fraction variations during the chemical reaction are linked via

AXH2 _ AX02 _ AXH2O AYH2 _ AYO2 _ _AYHQO
1 1/2 —1 7 Wa, 0.5 Wo, Wi,o

(1)

where W; is the molar weight of the j-th species.



3.1 Governing equations

We consider here initially homogeneous mixtures of perfect gases. The system of equations
we want to solve is given by

(
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p being the total density (kg/m? in the ST units), @ the velocity (m/s), P the pressure (Pa),
& (hy) the specific total (sensible plus formation plus kinetic) energy (enthalpy) (J/kg), D
the visible flame speed.

P is linked to the internal energy via the equation of state (EOS). In our case

R 5 1 ~ R P
T
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where R is the universal gas constant (R = 8.314 J/mol/K), T' the mixture temperature (K
in ST units), W; (kg/mol) ¢, ;(T) (J/kg/K) and R (J/kg) the molar weight, the constant
volume specific heat and the formation enthalpy at 0 K of the species j, e the (sensible)
internal energy (J/kg). The progress variable (7, t) for the chemical reaction is related to
the hydrogen mass fractions Yy, ;(7,t) and Yy, ¢(7,t) before and after the combustion by

Y, (7o) — Yiw, 5 (7 8
(1) = D) Meal B 1) )
YH27f('r, t) - YH%i(T’, t)

Since the chemical reaction is assumed to be infinitely fast, the progress variable will be
either 1 (in the burnt region) or 0 (in the unburnt region).
The first three equations represent the conservation equations for mass, momentum and

energy. Using the values for £, we can recover the instantaneous mass fractions (used in the
EOS). Indeed for hydrogen it is

Yi, = Y + (Vi — Yoi)-

In case of complete combustion,
Wy
2
YH27f = Imax (0, YHg,i — 7}/0271 .

For the j-th species
Y =Y+ (Y — Vi)

where (Y —Y;;) is linked to (Yp, ¢ — Yh,.) via equation (1).
The fourth equation in (2) is the transport equation for the progress variable . This equation
is in non-conservative form. As one can read in [1], since £ is 0 in the unburnt region and



1 in the burnt one, far from the reactive interface this equation is satisfied (the LHS of the
equation is zero); then D needs to be defined only on the interface (with the same value

ahead and behind it) and represents its velocity. D is computed here as function of the
fundamental flame speed K| via

D =@ + Kofl,, (4)

where 1, is the normal to the flame surface going from the burnt to the unburnt region, o
the velocity of the unburnt gas.

Concluding, our final purpose is the solution of the system of equations (2). The dependent
variables are p, pw, pé;, and £. At the beginning we know the initial conditions for these
variables. The fundamental flame speed Kj can be a function of space and time; in this work
we consider it to be either a constant or a function of time only.

4 Numerical Modelling

The system of equations (2) is solved using Finite Volume approach. We use the approximate
Riemann solution to the reactive Riemann problem described in [3]. The solution of the
reactive Riemann problem requires the flame surface location which is determined using the
Discrete Equation Method described below.

4.1 RDEM for the reactive Euler equations

The full description of the Reactive Discrete Equation Method (RDEM) can be found in |2].
In this subsection we give a brief summary of its main features.

e The DEM and RDEM are Fulerian approaches, although their extension to the Arbi-
trary Lagrangian Eulerian (ALE) approach is straightforward.

e The methods are used for studying multiphase mixtures, in which global averaging
of a variable in a control cell could lead to unacceptable numerical errors. In these
approaches each phase has its own set of variables.

e DEM has been introduced in [1].

e DEM has been modified into RDEM and used, coupled with a reactive Riemann solver,
to study evaporation front propagations and detonation propagations |2].

e RDEM is used in [3| to study flame front propagation in a deflagration and a detonation
regimes.

e Both approaches are conservative, i.e. the extensible quantity taken from one phase is
given to the other.

The description of the RDEM approach is the object of 2] in the case of evaporation front
progagation; the adaption of this approach to combustion problem has been possible thanks
to solution of the Reactive Riemann problem at all combustion regimes [3]. Indeed, as
suggested in [11], the reaction wave, in the same manner as an evaporation wave, can be
considered as a phase boundary which separates the “unburnt gas” phase (phase 1) from the
“burnt gas” phase (phase 2); thus, across the reactive shock we have a “phase transition”
between the “unburnt mixture” phase and the “burnt mixture” phase.

We emphasize that, in several spatial dimensions, the reactive Riemann problem is solved
in each spatial direction. As explained in [3|, the flame speed is given by D =@+ Kong,
Tl being the normal to the flame surface going from the burnt to the unburnt mixture (i.e.
Mg X 604, a being the fraction volume of one phase). Then when we want to compute the
numerical flux in the (7, f) frame of an interface of a cell volume (Finite Volume approach),
we have to solve a 1D Riemann problem with a fundamental flame speed equal to Ky(7i-7,).



5 Numerical Results

In the present report we explore two cases: Kj is constant in space and time, and K is a
time variable.

The first case, i.e. the case of constant K, is used in order to test the grid convergence of
the numerical solution. We test it in terms of computed visible flame velocity in the tube,
as well as flame surface evolution. By using the time variation of the fundamental flame
speed, i.e. Ky = Ky(t), we try to reproduce the experimental values for a visible flame
velocity. This will allow us to analyze the values of the fundamental lame speed in terms of
the corresponding values of the visible flame speed.

5.1 Constant value of fundamental flame speed

There are two main factors responsible for flame acceleration: increase of the flame surface
due to interactions of gas flow with obstructions and increase of the burning rate with the
turbulence level. In this section only the first one was accounted for.

We applied the following strategy: first, compute the flame speed on the coarse grid (RAF
1), using the value of Ky such that the computed visible flame velocity is close to the
experimental one, and second, make the computation with the same Ky on the refined grids
(RAF2, RAF3, and RAF4). The idea behind is to study the grid convergence in terms of
flame velocity and flame surface.

The computations have been done assuming the axial symmetry of the solution, and the
numerical grids are presented on the Fig. 3. For the coarse grid the tube radius is divided
into 7 elements. This number is doubled for the second level of refinement, tripled - for
the third, and quadrupled - for the fourth. The segments along the axis of symmetry are
refined accordingly. The obstacles in the tube are represented by the cracks in the mesh (see
Fig. 3, zoomed part), so that the neighboring elements are slightly skewed. In the dome the
elements are not uniform: their linear sizes gradually increase up to three times along the
radius, and up to four times - along the axis of symmetry.

Total mesh
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Figure 3: Numerical grids used for the computation. The coarse grid (RAF1) is composed of 3585 elements,
grid RAF2 - of 14283 elements, grid RAF3 - of 32201 elements, and grid RAF4 - of 57160 elements.

The results for the flame speed corresponding to the coarse mesh (RAF1, green curve on the
Fig. 4 (left)) are obtained by trial and error in such way as to have the computed values for
flame velocity within the error bars of the experimental flame velocity at as many points as
possible. The value of the fundamental flame velocity in this case is Ky = 10 m/s. It appears
that by using a single values for the fundamental flame speed Ky we can not reproduce the



experimental curve: K, has to be relatively low in the initial non-obstructed part of the
tube, and sufficiently high at the obstructed area.

By looking at the computed visible flame velocity obtained on different grids for Ky = 10
m/s (Fig. 4 (left)) we observe 1) a remarkable difference between the results corresponding
to the coarse grid and the results corresponding to the finer grids, and 2) a relatively small
difference between the results corresponding to grids RAF2, RAF3, and RAF4 in the initial
non-obstructed part, and in the most of obstructed part.

Lower numerical viscosity relate to the finer grids leads to a higher gas velocity along the
center-line at the flame location, which in turn leads to a higher flame stretch. Flame surface
evolutions are close to each other when the flame crosses first six obstacles, while further
downstream the curves diverge: the evolution corresponding to the finest mesh (RAF4) is
generally higher than the others. This can be explained by the higher amplitudes of the gas
velocity; at the last obstacle the gas velocity corresponding to the finest mesh is 100 m/s
higher than the velocities corresponding to other grids.
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Figure 4: Flame velocity computed for different grids and compared with the experimental flame velocity
(left), and non-dimensionalized flame surface computed for different grids (right). Obstacle positions are
shown by short vertical lines. Ky = 10 m/s.

From the Figure 4 (right) we can see that a flame surface increases while flame crosses the
obstacle-laden part. It reaches its maximum value at a position which is 3 to 4 diameters
downstream the last obstacle, and this value varies between 15 and 27 tube cross sections,
depending on the mesh. This rather big value for the flame surface can be explained by the
presence of certain number of unburnt gas pockets between the obstacles, seen on Fig. 5
(right). The progress variable distribution is shown there at the time when the flame surface
has its maximum value. Soon after the time of reaching the maximum value for flame surface
area, the fresh gas in the pockets is consumed, which inevitably leads to diminishing of the
flame surface area. The progress variable distributions show highly diffused flame computed
using the coarse grid (RAF1). In the case of the other grids flame distributions show similar
trends: it spreads between seven obstacles.

The flame surface spread between several obstacles in obstructed channels has been observed
experimentally as well. There exist, however two major differences between the experimental
results and the present numerical results conditioned by the modelling capabilities. In fact
in the combustion model there is no mechanism of flame quench /extinction. Experimentally
the flame might cease to exist between certain obstacles, which would lead to smaller values
of flame surface. Another difference lies in the fact that K, is a constant everywhere in
the domain. Recent experimental results [12| show that a flame (stoichiometric methane-
air mixture used in the reference) in a obstructed channel with BR—0.67 exhibits different
behavior depending on the flame position. The flame surface consists of a laminar flame
tip propagating downstream in the channel core and the rest of the flame surface in the
turbulent regime propagates transversely into the recirculation zones between obstacles. As



a future work we suggest to perform the computation using variable in space values of K
in order to capture the experimental lame behavior.

The maximum value of the flame surface is reached when the flame exits the obstacle area
and propagates further 3 to 4 diameters downstream. At that time there still exist pockets of
unburnt gas (see Fig. 5) as well as the mushroom-like shape of the flame in the obstacle-free
part, visible in the pictures corresponding to finer grids.

Figure 5: Progress variable distribution at the time when the flame surface reaches its maximum value in
the tube. Results correspond to grids RAF1 at t = 19.75 ms, RAF2 at t = 16.78 ms, RAF3 at t = 16.03 ms,
and RAF4 at t = 15.45 ms (from left to right). Ky = 10 m/s. Red color corresponds to unburnt mixture,
blue color - to burnt mixture.

5.2 Variable value of fundamental flame speed.

As it was mentioned in the previous subsection, the constant value of Ky does not allow us
to reproduce the averaged experimental visible flame velocity evolution: we have either too
high velocity in the initial obstacle-free part of the tube, or too low velocity at the upper part
of the obstructed area. In this subsection we shall change the value of the fundamental flame
speed with time in order to have a visible flame speed as close as possible to the experimental
one. This will allow us to analyze the fundamental flame speed evolution.

From the previous subsection we can see that the results computed using the coarse mesh
RAF1 suffer from an excessive diffusion, while the results corresponding to the other grids
show similar behavior at least in the most part of the tube. Due to the fact the trial-and-
error computation requires considerable number of tests, we prefer to use the grid RAF2 in
order to have a reasonable CPU time.

On the Fig. 6 (left) we present the comparison between the experimental visible flame
velocity and the computed visible flame velocity. The computed curve is entirely within the
error bars of the experimental curve. This was possible due to dynamic change of value
of Ky during the computation. These values together with their application intervals are
indicated on the Fig. 6 (left). First of all we would like to mention that the ratio between
the numerical values for Ky and the laminar flame velocity (taken at initial thermodynamic
conditions) varies from 14.55 to 112 during the flame acceleration in the tube. These values
for ratio are high compared with the experimental values for the ratio between turbulent
fundamental flame speed and laminar flame speed which do not exceed 20 (see |13] and



references therein).

Another point deserving attention is the excessively low value for Ky in the region after 2.3
meters, i.e two diameters downstream of obstructed part. We had to impose excessively low
value (Ko = 0.01 m/s) in order to recover the negative gradient of the experimental flame
velocity. We note in passing that experiments performed in ENACCEF using a hydrogen-air
mixture with negative hydrogen concentration gradient going from 11.4 % at the tube bottom
down to 6.7 % at the top of the tube show that flame is always quenched in the upper part of
the tube. This indicates that the important flame stretch together with enhanced mixing lead
in this situation to low values of the fundamental flame velocity. In our case the mixture is
more reactive (13 % of hydrogen), therefore the flame “survives” and continues to propagate.
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Figure 6: Flame velocity computed using grid RAF2 (blue curve) is compared with the experimental flame
velocity (red curve) (left). adimensionalized flame surface computed using constant value of Ky (green line),
and variable values of K (blue line) (right) Obstacle positions are shown by short vertical lines. Values of
Ky are indicated together with the application intervals.

The flame surface evolution computed using the variable in time values of Ky shows similar
behavior to the evolution corresponding to the constant K, value upto the distance Z = 1.5
m. When the fundamental flame velocity is increased twofold, from 10 m/s to 20 m/s, the
flame surface decreases and oscillates around 12 x S;,.. This decrease we attribute to the
rapid burn-out of the fresh gas pocketed between the obstacles. This is confirmed by looking
at the progress variable distribution at time ¢ = 50.35 ms, i.e. time when the flame surface
reaches the value 10 X Syupe. There is almost no unburnt gas downstream of the flame.
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Figure 7: Computed pressure evolution in the upper part of the dome (blue line) compared with the exper-
imental pressure evolution (red line).

The computed overpressure evolution at the transducer located in the upper part of the dome
is compared with the corresponding experimental overpressure evolution on the Fig. 7. We
have shown in the Section 3 that the pressure rise corresponds to the flame propagation

10



inside the dome. It means that in order to correctly model the pressure rise gradient one
has to correctly model flame velocity and flame surface development inside the dome. This
is outside the scope of the present report as there are very limited experimental data. The
computed asymptotic values for the overpressure oscillates around a value close to 4.1 bar
which is near the AICC value of 4.077 bar.

6 Conclusions

In this paper the RDEM method is applied to the simulation of the combustion Test 13H
performed in the ENACCEF facility. Two cases were explored:

e K is constant in space and time, i.e. increase of the flame surface due to only interac-
tions of gas flow with obstructions is accounted;

e K is a time variable, i.e. in addition to the above phenomenon, a change of the burning
rate with time uniformly in space is considered.

The first case, i.e. the case of constant Ky, is used in order to test the grid convergence of
the numerical solution. We test it in terms of computed visible flame velocity in the tube,
as well as flame surface evolution. We show that grid convergence is achieved in terms of
the above mentioned variables, and the solutions corresponding to three of the four meshes
considered are similar. This allowed us to use a second grid, called RAF2, for making a
numerical experiment with time varying K. The goal is to reproduce experimental visible
flame speed. The values of fundamental flame velocity K, were compared to laminar flame
speed, which showed that their ratio is up to six times greater than the corresponding
experimental ratio.

As a future work, we suggest to perform a computation with a variable in space and time
value of K by taking into account pressure, temperature, and shear stress effects.
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