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ABSTRACT

During the early phase of the transient process following a hydrogen leak into the atmosphere, a contact
surface appears separating hot air from cold hydrogen. Locally, the interface is approximately planar.
Diffusion occurs, potentially leading to ignition. This process was analyzed by Liñán and Crespo (1976)
for Lewis number unity and Liñán and Williams (1993) for Lewis number less than unity. In addition
to conduction, these processes are affected by expansion due to the flow, which leads to a temperature
drop. If chemistry is very temperature-sensitive, then thereaction rate peaks close to the hot region,
where relatively little fuel is present. Indeed the Arrhenius rate drops rapidly as temperature drops,
much more so than fuel concentration. However, the small fuel concentration present close to the air-
rich side depends crucially upon the balance between fuel diffusion and heat diffusion, hence the fuel
Lewis number. For Lewis number unity, the fuel concentration present due to diffusion is comparable
to the rate of consumption due to chemistry. If the Lewis number is less than unity, fuel concentration
brought in by diffusion is large compared with temperature-controlled chemistry. For a Lewis number
greater than unity, diffusion is not strong enough to bring in as much fuel as chemistry would be able
to burn, and combustion is controlled by fuel diffusion. In the former case, combustion occurs faster,
leading to a localized ignition at a finite time determined bythe analysis. As long as the temperature drop
due to the expansion associated with the multidimensional nature of the jet does not lower significantly
the reaction rate up to that point, ignition in the jet takes place. For fuel Lewis number greater than unity,
first, the reaction rate is much lower. Second, chemistry does not lead to a defined ignition. Eventually,
expansion will affect the process and ignition does not take place. In summary,it appears that the reason
why hydrogen is the only fuel for which jet ignition has been observed is a Lewis number effect, coupled
with a high speed of sound hence a high initial temperature discontinuity.

1. INTRODUCTION

Spontaneous ignition of hydrogen jets was first studied by Wolański & Wójcicki [1], although [2] there
are reports of earlier observations. Recent work includes experiments [3, 4] and simulations [5, 6, 7].
Potential role of expansion due to shock multidimensionality leading to a temperature drop has been
suggested [7]. However, as discussed in detail by Astbury & Hawksworth [2], the exact mechanism
resulting in ignition of transient hydrogen jets from a highpressure source remains to be determined.

Initially, the structure of the system is well described as ashock tube (Riemann) problem, if in a one-
dimensional geometry [3] (i.e., inside a tube), or its multidimensional equivalent [8]. Chemistry needs
fuel and oxidant to be present, at a location where temperature is high enough for the reaction rate to



be significant. Thus one should expect that if ignition occurs, it will happen in the neighborhood of the
contact surface produced by the shock tube problem, separating hydrogen cooled by expansion from the
high pressure source from air warmed though the leading shock. For lower pressure ratios, this interface
is Rayleigh-Taylor stable; however, in the planar shock tube problem, for higher pressure ratios, cold
hydrogen becomes heavier than hot air on the other side of thecontact surface, which is then unstable;
even then, the density ratio remains close to 1 thus the instability is rather weak. In any event, the
instability will affect the contact surface unevenly, with some regions largelyunaffected.

The initially nearly planar interface between hot air and cold hydrogen evolves under the combined
effects of diffusion and advection due to flow including instability. However, over the time window
required for ignition (determined by the analysis), the thickness of the diffusion layer remains small
compared with its radius. As a result, a one-dimensional model remains realistic and meaningful. An
analysis by Liñán & Crespo [9], and by Liñán & Williams [10], focuses upon ignition precisely at
such an interface. However their results will be affected by expansion due to the three-dimensional
shock structure, which lowers temperature, potentially inhibiting ignition. The analysis reveals crucial
differences in behavior depending upon the Lewis number. For Lewis number below a threshold close
to unity, the value of which is precisely determined by the analysis, a mechanism similar to the classical
thermal explosion mechanism of Frank-Kameneskii takes place, as long as the expansion rate is below
a critical value, also determined by the analysis. However,if the Lewis number is above the threshold,
initial ignition occurs as a slow process characterized by afront progressing from the warm air side into
the fuel, which is eventually quenched by expansion.

Physically, since the reaction rates are very temperature-sensitive, then in the spontaneous ignition prob-
lem, ignition should take place very nearly in the hot air region. That hydrogen diffuses much more
effectively than heat (i.e. a small Lewis number) is then crucial in bringing enough fuel to sustain the
chemical reaction. (Likewise in the case of an oxidant with Lewis number smaller than unity, one might
expect that a jet of oxidant from a high pressure source into fuel might result in jet ignition.)

The role of the Lewis number in extinction of stretched flamesis well-known. However, to the authors’
knowledge, its role in spontaneous ignition of hydrogen jets had not been identified previously.

2. PHYSICAL MODEL

In the structure of the flow behind a three dimensional expansion [8], the region of interest is what, in an
inviscid and non-conducting large scale model, appears as acontact surface separating air heated by the
leading shock from expanded hydrogen. Locally, diffusion will take place. As long as the thickness of
the diffusion layer is small compared with the radius of curvature, the geometry remains approximately
planar. It is convenient to introduce a frame of reference attached to the contact surface in the large scale
problem, and to focus on the local small scale problem, taking diffusion into account. Because the shock
weakens as it expands, this local frame is non-inertial, butone readily shows that the resulting pressure
gradients are limited to a fraction of the mean pressure of the order of the Mach number based upon local
velocities, which are small. Thus, momentum results in a pressure that is time-dependent but spatially
uniform at leading order. The time dependency can then be obtained from the large scale problem; here
it is taken to be an unspecified but known function of time. This is precisely the same approach as in
Maxwell & Radulescu [7], who implemented a numerical solution, using a realistic kinetic scheme.

For the planar model to be realistic, there must be regions where the diffusion layer is not overly affected
by Rayleigh-Taylor instability. At the pressures of interest, the behavior of hydrogen may depart from
the ideal gas. Using a Noble-Abel model [11, 12, 13], the relationship between pressure and velocity
across an expansion wave is unchanged in relation to resultsfor ideal gas, and so is the pressure ratio.
However, writing the Nobel-Abel equation of state asp(1− bρ) = ρRT , the density ratio becomes
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Figure 1: Density ratio across the contact surface in the onedimensional shock tube problem. Upper line, ideal gas law for
both hydrogen and air; lower curve: hydrogen is a Noble-Abelfluid with b = 0.00775 m3/kg, air is ideal gas.

ρH2

ρair
=

RairTair
RH2

TH2
+ bp

(1)

Figure 1 shows how the density ratio across the diffusion layer depends upon the pressure ratio. It
shows that for higher pressures the ratio becomes larger than unity, so that the layer becomes unstable,
and that even for large pressures, the ratio remains close to1. Taking both hydrogen and air as ideal
gases, the transition occurs for a pressure ratio of approximately 335, and 370 using a Noble-Abel
model for hydrogen, which results in a density ratio of 1.38 for a pressure ratio 700. Otherwise, in the
neighborhood of the contact surface, real gas effects should not be significant. For an analysis of the
effect of curvature on the instability, see [8].

The problem is thus reduced to the formulation of Liñán & Crespo [9], but in an environment in which
pressure is dropping. The physical model still includes conservation of mass, energy and species, namely
fuel and oxidant. The kinetic model is assumed to be single step Arrhenius. As a result, the problem is
described by dimensionless conservation laws:

∂ρ

∂t
+
∂(ρu)
∂x
= 0 (2)

ρ
∂T
∂t
+ ρu
∂T
∂x
−
γ − 1
γ

dp
dt
=
∂

∂x
ρα
∂T
∂x
+ Qṁ (3)

ρ
∂yO

∂t
+ ρu
∂yO

∂x
=
∂

∂x
ρDO
∂yO

∂x
− νṁ (4)

ρ
∂yF

∂t
+ ρu
∂yF

∂x
=
∂

∂x
ρDF
∂yF

∂x
− ṁ (5)

with

ṁ = kρya
Oyb

F exp
−Ta

T
(6)

Here the fluid has been taken as an ideal gas with constant specific heats. Mass fractions areyF and
yO, respectively for fuel and oxidant. Thermodynamic state variables such as pressurep, densityρ,
temperatureT , and thermal diffusivity α have been scaled by some reference value (say, initial values in
the hot air side), time by a yet to be specified time scaleτ, the heat releaseQ, by cp times the reference
temperature, and the rate multiplierk, by 1/τ. The diffusion coefficientsDO andDF have been scaled
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by the thermal diffusivity at the reference state. The coordinatex has been scaled by the square root
of the productτ times the reference thermal diffusivity. ν accounts for the stoichiometric ratio. The
Lewis numbersLeF = α/DF andLeO = α/DO are assumed constant, and diffusivity α is taken to be
inversely proportional to the square of density.Ta is the activation temperature scaled by the reference
temperature. Typically,Ta is quite large, so that the reaction rate becomes very temperature-sensitive.
The solution below will be obtained specifically forTa >> 1.

Boundary conditions for temperature and mass fractions correspond to the values associated with the
contact surface in the large scale problem, taking the effect of expansion into account, respectively at
x → ±∞. Initial conditions att = 0 correspond to a jump consistent with the contact surface. In effect,
the problem has been reduced to a one-dimensional diffusion/advection/chemistry.

Before attempting to solve, it is useful to reduce the problem to a formulation that, in the absence of
chemistry, is self-similar, introducing the similarity variable

η =
1

ρ
√
αt

∫ x

0
ρdx (7)

Then,

4t
∂yF

∂t
− 2η
∂yF

∂η
=

1
LeF

∂2yF

∂η2
−

4tT
p

ṁ (8)

4t
∂yO

∂t
− 2η
∂yO

∂η
=

1
LeO

∂2yO

∂η2
−

4tTν
p

ṁ (9)

4t
∂T
∂t
− 2η
∂T
∂η
=
∂2T

∂η2
+

4t(γ − 1)T
γp

dp
dt
+

4tT Q
p

ṁ (10)

Boundary conditions forη → −∞ areyO → 0, yF → 1 andT → TF . For η → +∞ the boundary
conditions areyO → 1, yF → 0 andT → TO. Initial conditions match the boundary conditions.

This completes the formulation. Next, to determine whetherignition will occur, the following approach
is implemented. So far, the timeτ which has been used to scale time remains unspecified. It is clear that
for sufficiently short times, the effect of chemistry will remain negligible. If the chemical source term is
negligible, then the problem above admits a closed form solution, which is readily obtained.

Next, in order to determine whether ignition will take place, time will be scaled such that the chemical
reaction contributes to only small temperature changes, such that temperatures will only increase by a
fraction of the order of the inverse activation temperatureTa which is assumed to be large. This will
allow to write the effect of chemistry as a perturbation added to the frozen flow solution. Finally, the
behavior of the solution to the perturbation problem will determine whether ignition takes place.

3. CHEMICALLY FROZEN FLOW

If the chemical source term is neglected, and in the absence of expansion, the solution to the problem
outlined in the previous section is self-similar. The solution only depends upon time through the similar-
ity variableη and takes the form of an error function. The pressure drop term adds a particular solution
to the homogeneous problem. Accounting for the pressure drop, one finds that the frozen solution is

yO f =
1+ erf(η

√
LeO)

2
, yF f =

1− erf(η
√

LeF)
2

(11)
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Figure 2: Frozen flow solution, vs.η, TO = 1, TF = 0.2, LeO = 1.0. Left: LeF = 0.5, right: LeF = 1.5. Temperature goes from
0.2 on left to 1.0 on right, fuel from 0 to 1, oxidant from 1 to 0.

T f =

{

TO +
(TO − TF)[erf(η) − 1]

2

}

p(γ−1)/γ (12)

Typical solutions to the diffusion problem are shown in Fig. 2. The effect of the Lewis number in
the region, on the air side, where temperature is high enoughto support chemistry, is quite clear; fuel
concentration is significantly lower for the higher Lewis number. Figure 3 explores the consequence on
local reaction rates. For a Lewis number 1.5, the peak in the rate is approximately 10% of the rate for
LeF = 0.5. On this basis alone, it becomes clear that the fuel mass diffusivity is important.

4. PERTURBATION DUE TO CHEMICAL REACTION

4.1. Approach

Next, focusing upon ignition, perturbations of the order ofthe inverse activation energy are considered,
using the symbolǫ = TO/Ta << 1 (ǫ is related to the reciprocal of the Zel’dovich number). The time
scaleτ such that chemistry affects the problem at orderǫ will be determined.

Ignition should occur in the region (in space-time) where the diffusion process above leads to tem-
perature departing from the hot air value by a fraction of order ǫ. To resolve that region, where the
independent similarity variableη becomes large,η needs to be rescaled, replacing it by the local (time-
dependent) space variableξ, of order unity in that region:

1− erf(η)
2

=
ǫξ

(1− TF/TO)
(13)

This is the region where chemistry is fastest and where oxidant concentration is very close to 1. However
relatively little fuel is present, which slows down chemistry although possibly not enough to balance the
effect of temperature. Using the rescaled coordinateξ, one finds that the frozen flow solution becomes

yO f = 1−
(η
√
π)LeO−1

2
√

LeO

(

2TOǫξ

TO − TF

)LeO

(14)

yF f =
(η
√
π)LeF−1

2
√

LeF

(

2TOǫξ

TO − TF

)LeF

(15)
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Figure 3: Reaction rates based upon the frozen flow solution vs. η, same parameters as in Fig. 2,kρ = 106, Ta = 10. and both
a andb = 1. Higher curve:LeF = 0.5, lower curve,LeF = 1.5.

T f = TO(1− ǫξ)p(γ−1)/γ (16)

The latter equation shows, as expected, a temperature departing fromTO by orderǫ. As to mass fractions,
yO is close to unity. However, obviously, close to the air side,the fuel concentration is small, of order
ǫLeF . It is of note thatthe magnitude of the fuel concentration in the region of interest depends upon the
Lewis number, being larger thanǫ, the magnitude of the temperature perturbation, if the Lewis number
is smaller than unity, and otherwise ifLeF is greater than 1. Only forLeF close to unity is the reactant
concentration of orderǫ. Thus one needs to develop three different solutions for these three cases.

Under the high activation energy approximation, using the expansionsT = T f + ǫT ′ and (further below)
yF = yF f + ǫy′F , the exponential in the Arrhenius rate becomes

exp
−Ta

T
= exp

−1

ǫ[(1 − ǫξ)p(γ−1)/γ + ǫT ′]
= exp

−p−(γ−1)/γ(1+ ǫξ − ǫp−(γ−1)/γT ′)

ǫ[1 − ǫ2(ξ2 − p−2(γ−1)/γT ′2)]
(17)

If pressure drops by more than orderǫ over a time of orderτ, then the magnitude of the reaction rate
drops over a time of orderτ, effectively quenching any incipient chemistry so that ignition will not take
place. Likewise, if pressure drops less than by orderǫ over a time of orderτ, the process is no longer
affected by the pressure drop. A balance will thus occur for pressure changing by orderǫ over a timeτ,
thus one writesp = p(ǫt). If pressure was scaled by its initial value so thatp(0) = 1, using Taylor series,

p−(γ−1)/γ = 1− ǫt
γ − 1
γ

dp
dt

∣

∣

∣

∣

∣

0
= 1+ ǫσt (18)

The symbolσ, with positive value when pressure drops, is defined as

σ = −
γ − 1
γ

dp
dt

∣

∣

∣

∣

∣

0
(19)

Neglecting contributions of higher order inǫ, the Arrhenius exponent becomes

exp
−Ta

T
= exp

−1
ǫ

exp(T ′ − ξ − σt) (20)

The constant factor exp−1/ǫ will be absorbed in the time scaleτ, as defined below. The temperature
perturbationT ′, the effect of diffusionξ, and expansionσt all contribute at the same order. The former
results in an increasing reaction rate while the latter two slow it down.
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If LeF = 1, Liñán’s formulation is recovered [9]. In all three cases (LeF < 1, close to 1 or> 1), as in
Liñán, when setting the time scale so as to balance chemistry and diffusion, the transient term becomes
small compared with diffusion. As a result, in all three cases the perturbation equations are reduced to
a quasi-steady formulation, in which time only appears as a parameter. Likewise, anticipating results
below, the expression for the time scaleτ leading to a balance between diffusion and reaction is also the
same in all cases:

τ =

(

1−
TF

TO

)bLeF (2η∗)2+b(1−LeF )Leb/2ǫ2−bLeF

πb(LeF−1)/2Qk
exp

1
ǫ

(21)

in which the factor exp 1/ǫ is due to the Arrhenius rate. The large numberη∗ is defined as the root of

η∗2 = − log
2η∗ǫ

√
π

1− TF/TO
(22)

Whenξ is of order unity,η is obviously large -see Eq. (13)- whileη∗ only differs fromη by order unity,
allowing for replacement of the variableη by the constant valueη∗, resulting in smaller order differences,
which can be neglected.

4.2. LeF close to unity

One readily verifies that ifLe − 1 = O(−1/ log ǫ) then the fuel concentration in the region whereξ is of
order unity is of orderǫ. Thus one introduces a reduced Lewis numberl, of order unity, defined by

ǫLeF−1 = 1/l (23)

After elimination, settingτ as per Eq. (21), the value providing for balance between diffusion and
reaction, the perturbation equations of orderǫ respectively to energy and fuel equations, become [9]:

1
4η2
∂T ′

∂t
+
ξ2

t
∂2T ′

∂ξ2
= −

[

ξ + l

(

1−
TF

TO

)

y′F

]b

exp
(

T ′ − σt − ξ
)

(24)

1

4η2
∂y′F
∂t
+
ξ2

t

∂2y′F
∂ξ2

=
1
Q

[

ξ + l

(

1−
TF

TO

)

y′F

]b

exp
(

T ′ − σt − ξ
)

(25)

Sinceη >> 1, the first (transient) term in Eqs. (24) and (25) is negligibly small compared with the other
terms, and the problem is reduced to the quasi-steady formulation

ξ2

t
d2T ′

dξ2
= −

[

ξ + l

(

1−
TF

TO

)

y′F

]b

exp
(

T ′ − σt − ξ
)

(26)

ξ2

t

d2y′F
dξ2

=
1
Q

[

ξ + l

(

1−
TF

TO

)

y′F

]b

exp
(

T ′ − σt − ξ
)

(27)

These are ordinary differential equations inξ in which time only appears as a parameter. They are
combined as follows. Adding Eqs. (26) and (27), one finds thatT ′ +Qy′F = 0. One definesβ as the ratio
of the hot air temperature to the adiabatic flame temperatureof the stoichiometric mixture initially at the
cold fuel temperature, which in the current context should be< 1:

β =
cp(TO − TF)l

Q
(28)

Finally, introducing the time parameter

∆ = t exp−σt (29)
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Figure 4: Solutions to the perturbation equation, Eq. (30).Left, for β = 0.3; right, forβ = 1.8; b = 1.

the problem becomes:

−ξ2

∆

d2T ′

dξ2
= (ξ − βT ′)b exp

(

T ′ − ξ
)

(30)

This is precisely the same equation obtained by Liñán and Crespo [9], although the symbols∆ andβ are
now more broadly defined, accounting for the expansion in∆ which in Liñán and Crespo was simply
time, and for the departure from unity of the Lewis number, inβ. Boundary conditions areT ′(0) = 0 for
ξ = 0 (which corresponds tox → ∞), since far away no fuel is present thus no chemistry occurs and,
from matching to the main diffusion zone,dT ′/dξ → 0 for ξ → ∞.

The problem has been reduced to a second order two point boundary value problem inξ, in which time
only appears through parameter∆. This problem calls for a numerical solution. It is readily transformed
into a two dimensional first order problem that is solved using a shooting method. However, because
of the presence of the factorξ2 on the left hand side, the resulting problem does not satisfya Lipschitz
condition atξ = 0 so that one needs to use a perturbation in order to implementinitial conditions,
eliminating one integration constant, which multiplies a mode that grows large forξ → 0 which is
inconsistent with the initial condition. The same solutionas in Liñán and Crespo [9] is recovered. For
each set of data, .i.e. for given values ofβ and∆, the solution increases monotonically fromT ′ = 0 at
ξ = 0, approaching a limitT ′(ξ → ∞) asξ becomes large, as shown in Fig. 4. The behavior for largeξ

is consistent with the right boundary condition, which imposes the slope to approach zero.

These solutions look similar in all cases. However, on the left plot, for β < 1, the curves, which
initially moved higher for higher∆, eventually move lower, while on the right, forβ > 1, the values
of T ′(ξ → ∞) continue growing as∆ increases. This difference becomes more apparent when plotting
values ofT ′(ξ →∞), vs.∆, as shown in Fig. 5.

As shown in [9] and in Fig. 5, forβ < 1, the solution to the problem of Eq. (30) changes significantly
between the case ofβ < 1 andβ > 1. Forβ < 1, the figure on the left shows that two solutions exist for
values of the time parameter∆ below a critical value∆∗ that depends uponβ, and no solution is found
for larger values of∆. The upper branch has no physical meaning [9]. For∆ → ∆∗, the scaling leading
to Eq. (30) breaks down since close to the turning point∆∗ the rate at which the solution depends upon
∆, hence on time becomes large. Thus chemistry becomes very fast, since the rate of growth of the
perturbation becomes infinite. This indicates that ignition has taken place.

For β < 1, in the absence of expansion, it follows that ignition occurs unconditionally att = ∆∗.
Including expansion, however, the relationship between∆ and time is now related by Eq. (29). As
shown on Fig. 6, for a given value ofσ, for ∆ below a maximum value∆max, there are two times
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Figure 5: CaseLeF close to unity. Left: SolutionT ′ for ξ → ∞ to Eq. (30) forβ from 0 to 0.6 at intervals 0.1, from left to
right. Right:β = 1.1, 1.2 and 1.4.b = 1.

Figure 6: Relationship between∆ and time, forσ = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 from bottom to top

yielding the same value of∆. Only the smallest one is physically meaningful, given thatthe process
proceeds in time starting att = 0. However for∆ > ∆max, there is no longer any time associated with∆.
The maximum value, obtained fort = 1/σ, is∆max = 1/eσ. As t → 1/σ, the rate at which∆ increases
with time becomes zero. Thus the reaction becomes progressively slower and effectively stops.

It is thus found that ifβ < 1, for ignition to take place, i.e. for∆ to reach∆∗, it must be that∆∗ ≤ ∆max.
Thus the critical expansion rate for a given value ofβ < 1 is

σ∗(β) =
1

e∆∗(β)
(31)

Forβ > 1 however, a different situation occurs. The plot on the right in Fig. 5 shows that, as∆ increases,
T ′(∞) now increases monotonically, although the rate of increase is monotonically decreasing. On the
right side of Eq. (30), the quantityξ − βT ′ to the powerb, corresponds to fuel mass fraction, which
vanishes when the fuel is fully burnt, i.e. at equilibrium. Such an equilibrium, i.e.T ′ = ξ/β, is a solution
to Eq. (30); it satisfies the boundary condition atξ = 0 (which corresponds tox → ∞) but not the
boundary condition toward the diffusion zone. The right plot in Fig. 4 shows a solution approaching
equilibrium for ξ close to zero, and growing as∆, hence time, increases. This behavior corresponds
to a combustion front moving progressively from the air sideinto the diffusion layer, with no runaway
ignition ever taking place at a finite∆. However, in the presence of expansion, this process will end
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Figure 7:LeF < 1. SolutionsT ′ for ξ → ∞ to Eq. (33), forLeF from 0.3 to 0.9 at intervals 0.1, from left to right.b = 1.

unconditionally when∆→ ∆max, i.e. at timet = 1/σ, beyond which ignition does not proceed.

In summary, the analysis shows that forβ > 1, i.e. for a fuel Lewis number above a critical valueLe∗F ,
ignition will not occur, even if expansion is very small. This critical value is given by

Le∗F = 1−
logcp(TO − TF)/Q

logǫ
(32)

However, if the fuel Lewis number is below that threshold, ignition will take place as long as the expan-
sion rate is below the critical value 1/e∆∗(β).

4.3. LeF smaller than unity

For fuel Lewis number close to unity, the rate at which fuel isconsumed is of the same order as the
rate at which it is supplied by diffusion. For smaller Lewis numbers, the rate at which diffusion bring
fuel into the ignition zone is, according to Eq. (15) of orderǫLeF , which is now much larger than the
rate at which temperature-limited chemistry consumes fuel, of orderǫ. Thus now consumption becomes
negligible compared to supply. Thus the factor representing the role of fuel concentration in the reaction
rate simply becomesξLeFb times a constant absorbed in the time scale. A procedure similar to the one
above forLeF of order unity yields the equation

−ξ2−bLeF

∆

d2T ′

dξ2
= exp

(

T ′ − ξ
)

(33)

This result is mentioned briefly in an appendix in [10]; conditions of validity and implications are only
briefly discussed.

Boundary conditions remain the same as above. Again, a numerical solution is obtained, yielding the
results forT ′(ξ → ∞) shown in Fig. 7.

Here, the results are similar to the case above (LeF close to unity), forβ < 1. Ignition will take place as
long as the expansion rate is below a critical value, given bythe same expression as above. However, the
time scale, given by Eq. (21), decreases rapidly withLeF . Thus a similar dimensionlessσ∗ will actually
correspond to a much stronger actual expansion, and ignition happens significantly earlier for fuels with
smaller Lewis number. This is the case most relevant to hydrogen jet ignition. The numerical value for
the time scale based upon Eq. (21) are comparable with results from numerical simulation [5, 6, 7].

4.4. LeF greater than unity

The formulation above assumed chemistry to take place at order ǫ, entailing consumption of fuel at that
order. However if the fuel Lewis number is greater than unity, diffusion is no longer strong enough to
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Figure 8:LeF > 1. SolutionsT ′ for ξ → ∞ to Eq. (34),LeF = 1.1, 1.2, 1.4 and 1.6 from bottom to top.b = 1.

provide that concentration, but only values of orderǫLeF . Since the reaction cannot consume fuel that
is not present, although temperatures continue departing from the hot side temperature by orderǫ, the
reaction rate is now limited by fuel concentration, to a temperature increase that is negligible compared
with the drop due to diffusion and expansion.

As a result, one needs to consider perturbations at orderǫLeF , limited by fuel concentration, denoted as
T ” and y”. Using the same approach as above, a quasi-steady equationis obtained in which the effect of
temperature increase due to the reaction in the Arrhenius term is now negligible:

−ξ2

∆

d2T ”
dξ2

= (ξ − βT ”)b exp−ξ (34)

Again, boundary conditions areT ′(0) = 0 for ξ = 0, since far away no fuel is present thus no chemistry
occurs and from matching to the main diffusion zone,dT ′/dξ → 0 for ξ → ∞. In this case again,
solutions to the problem of Eq. (34) forT ′(ξ → ∞) are single-valued and a solution exists for all values
of ∆, no matter how large, just as in the case forLeF close to unity, whenβ > 1. This case is clearly not
conducive to ignition since eventually the effect of expansion will quench the chemistry.

5. CONCLUSION

The current analysis focused upon ignition in the diffusion layer that appears at the interface between
shock-heated air and hydrogen cooled by expansion during the transient phase of the jet ignition process.
Results show the process to be quite sensitive to the fuel Lewis number. If the fuel Lewis number is less
than a critical value close to unity, then as long as the rate of expansion due to the multidimensional
shock topology remains below a specific threshold determined by the analysis, ignition takes place
as a runaway mechanism. The analysis also determines the finite ignition time, with numerical value
comparable with numerical simulation results [5, 6, 7]. If the fuel Lewis number is larger than the critical
value, instead of a runaway ignition, a reaction front movesfrom the warm air side into the diffusion
region, but no matter how slow, expansion eventually quenches the front in finite time. The critical
Lewis number value for which transition between these two regimes occurs was also determined.

The significance of the fuel Lewis number is due to the following. If chemistry is very temperature
sensitive, then the reaction rate peaks close to the hot air side of the diffusion layer, where there is ample
oxygen to support ignition, but very little hydrogen, supplied from the cold side by mass diffusion.
The Lewis number is the ratio heat diffusion/mass diffusion. A fuel with low Lewis number, such as
hydrogen, will diffuse much faster, resulting in a significantly higher concentration at the location where
temperature is close to the hot side temperature, where ignition is expected to occur. For fuel Lewis
number close to unity, the rate at which fuel is consumed is ofthe same order as the rate at which it
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is supplied by diffusion. For smaller Lewis numbers, consumption is negligible compared with supply
by diffusion, which is large compared with the inverse activation temperature. However, for larger
Lewis numbers, chemistry could consume more fuel than diffusion provides, resulting in much slower
chemistry; the temperature increase due to the reaction is then small compared with the drop due to
diffusion and expansion.

Advective mixing such as turbulence and/or Rayleigh-Taylor instability might be of some help in igniting
fuels withhigh Lewis numbers. However, advection affects equally heat and mass diffusion, resulting
in a turbulent Lewis number equal to unity. Thus in hydrogen jets, turbulence will likely hamper ignition
rather than promoting it, and ignition will likely occur along quiescent sections of the diffusion layer.

Furthermore, in the context of jet ignition, there is a clearrelationship between the size of the leak and
the expansion rate, with a larger hole leading to a slower expansion. Thus the current result provides an
explanation as to why only hydrogen jets appear to ignite, incontrast with hydrocarbon fuels, and also
confirmation of an explanation [7] of the experimental observation whereby larger hydrogen leaks are
more likely to ignite [1, 2].
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