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ABSTRACT

During the early phase of the transient process followingdtdgen leak into the atmosphere, a contact
surface appears separating hot air from cold hydrogen. llyptiae interface is approximately planar.
Diffusion occurs, potentially leading to ignition. This praeass analyzed by Lifian and Crespo (1976)
for Lewis number unity and Lifian and Williams (1993) foriie number less than unity. In addition
to conduction, these processes dife@ed by expansion due to the flow, which leads to a temperatur
drop. If chemistry is very temperature-sensitive, thenrgrection rate peaks close to the hot region,
where relatively little fuel is present. Indeed the Arrhenrate drops rapidly as temperature drops,
much more so than fuel concentration. However, the smalldomecentration present close to the air-
rich side depends crucially upon the balance between fieisittn and heat €tusion, hence the fuel
Lewis number. For Lewis number unity, the fuel concentrajiwesent due to ffusion is comparable
to the rate of consumption due to chemistry. If the Lewis nanib less than unity, fuel concentration
brought in by ditusion is large compared with temperature-controlled ch@gniFor a Lewis number
greater than unity, éiusion is not strong enough to bring in as much fuel as cheynigbuld be able

to burn, and combustion is controlled by fueftdsion. In the former case, combustion occurs faster,
leading to a localized ignition at a finite time determinedtyanalysis. As long as the temperature drop
due to the expansion associated with the multidimensioaaira of the jet does not lower significantly
the reaction rate up to that point, ignition in the jet taklzep. For fuel Lewis number greater than unity,
first, the reaction rate is much lower. Second, chemistrys caé lead to a defined ignition. Eventually,
expansion will &ect the process and ignition does not take place. In sumibhappears that the reason
why hydrogen is the only fuel for which jet ignition has bedaserved is a Lewis numbeftect, coupled
with a high speed of sound hence a high initial temperatiseoditinuity.

1. INTRODUCTION

Spontaneous ignition of hydrogen jets was first studied biaféki & Wéjcicki [1], although [2] there
are reports of earlier observations. Recent work incluagerments [3, 4] and simulations [5, 6, 7].
Potential role of expansion due to shock multidimensiaypdéading to a temperature drop has been
suggested [7]. However, as discussed in detail by Astburyafksworth [2], the exact mechanism
resulting in ignition of transient hydrogen jets from a hjglessure source remains to be determined.

Initially, the structure of the system is well described ahack tube (Riemann) problem, if in a one-
dimensional geometry [3] (i.e., inside a tube), or its ndlittiensional equivalent [8]. Chemistry needs
fuel and oxidant to be present, at a location where temperaguhigh enough for the reaction rate to



be significant. Thus one should expect that if ignition oscurwill happen in the neighborhood of the
contact surface produced by the shock tube problem, samatatdrogen cooled by expansion from the
high pressure source from air warmed though the leadingkstiar lower pressure ratios, this interface
is Rayleigh-Taylor stable; however, in the planar shocletploblem, for higher pressure ratios, cold
hydrogen becomes heavier than hot air on the other side aiothtact surface, which is then unstable;
even then, the density ratio remains close to 1 thus thehitisfais rather weak. In any event, the
instability will affect the contact surface unevenly, with some regions langedfected.

The initially nearly planar interface between hot air anttdaydrogen evolves under the combined
effects of difusion and advection due to flow including instability. Howevover the time window
required for ignition (determined by the analysis), thekhess of the diusion layer remains small
compared with its radius. As a result, a one-dimensionalehmmains realistic and meaningful. An
analysis by Lifian & Crespo [9], and by Lifian & Williams(], focuses upon ignition precisely at
such an interface. However their results will bfeated by expansion due to the three-dimensional
shock structure, which lowers temperature, potentialhjbiting ignition. The analysis reveals crucial
differences in behavior depending upon the Lewis number. ForsLewmber below a threshold close
to unity, the value of which is precisely determined by thalgsis, a mechanism similar to the classical
thermal explosion mechanism of Frank-Kameneskii takeseplas long as the expansion rate is below
a critical value, also determined by the analysis. Howeafiéne Lewis number is above the threshold,
initial ignition occurs as a slow process characterized figiat progressing from the warm air side into
the fuel, which is eventually quenched by expansion.

Physically, since the reaction rates are very temperatemsitive, then in the spontaneous ignition prob-
lem, ignition should take place very nearly in the hot airioag That hydrogen diuses much more
effectively than heat (i.e. a small Lewis number) is then ciuoidringing enough fuel to sustain the
chemical reaction. (Likewise in the case of an oxidant wigwis number smaller than unity, one might
expect that a jet of oxidant from a high pressure source umtbrhight result in jet ignition.)

The role of the Lewis number in extinction of stretched flansesell-known. However, to the authors’
knowledge, its role in spontaneous ignition of hydrogeas fetd not been identified previously.

2. PHYSICAL MODEL

In the structure of the flow behind a three dimensional expar]8], the region of interest is what, in an
inviscid and non-conducting large scale model, appearsastact surface separating air heated by the
leading shock from expanded hydrogen. Locallyfudiion will take place. As long as the thickness of
the difusion layer is small compared with the radius of curvature,geometry remains approximately
planar. Itis convenient to introduce a frame of referentached to the contact surface in the large scale
problem, and to focus on the local small scale problem, tp#ifiusion into account. Because the shock
weakens as it expands, this local frame is non-inertial obetreadily shows that the resulting pressure
gradients are limited to a fraction of the mean pressureebtter of the Mach number based upon local
velocities, which are small. Thus, momentum results in gaqree that is time-dependent but spatially
uniform at leading order. The time dependency can then leeraat from the large scale problem; here
it is taken to be an unspecified but known function of time. sTiBiprecisely the same approach as in
Maxwell & Radulescu [7], who implemented a numerical s@uatiusing a realistic kinetic scheme.

For the planar model to be realistic, there must be regioreseviie difusion layer is not overlyféected

by Rayleigh-Taylor instability. At the pressures of intgrehe behavior of hydrogen may depart from
the ideal gas. Using a Noble-Abel model [11, 12, 13], theti@mighip between pressure and velocity
across an expansion wave is unchanged in relation to rdsulideal gas, and so is the pressure ratio.
However, writing the Nobel-Abel equation of state@$ — bp) = pRT, the density ratio becomes
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Figure 1: Density ratio across the contact surface in thedimensional shock tube problem. Upper line, ideal gas law fo
both hydrogen and air; lower curve: hydrogen is a Noble-Aloéd with b = 0.00775 ni/kg, air is ideal gas.
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Figure 1 shows how the density ratio across thudion layer depends upon the pressure ratio. It
shows that for higher pressures the ratio becomes largeruhidy, so that the layer becomes unstable,
and that even for large pressures, the ratio remains cloge Taking both hydrogen and air as ideal
gases, the transition occurs for a pressure ratio of apmabely 335, and 370 using a Noble-Abel
model for hydrogen, which results in a density ratio of 1.88d pressure ratio 700. Otherwise, in the
neighborhood of the contact surface, real géisats should not be significant. For an analysis of the
effect of curvature on the instability, see [8].

The problem is thus reduced to the formulation of Lifian &¢€po [9], but in an environment in which
pressure is dropping. The physical model still includesseovation of mass, energy and species, namely
fuel and oxidant. The kinetic model is assumed to be single Atrhenius. As a result, the problem is
described by dimensionless conservation laws:

op 0(pu)
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Here the fluid has been taken as an ideal gas with constanfisgezats. Mass fractions agg and
Yo, respectively for fuel and oxidant. Thermodynamic statdaldes such as pressupe densityp,
temperaturd’, and thermal dfusivity @ have been scaled by some reference value (say, initial vatue
the hot air side), time by a yet to be specified time seatbe heat releas®, by c, times the reference
temperature, and the rate multiplierby 1/r. The dtfusion codicientsDo and Dg have been scaled
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by the thermal dfusivity at the reference state. The coordinateas been scaled by the square root
of the productr times the reference thermalffilisivity. v accounts for the stoichiometric ratio. The
Lewis numberd.er = a/Dg andLeg = a/Dg are assumed constant, andfasivity « is taken to be
inversely proportional to the square of density, is the activation temperature scaled by the reference
temperature. TypicallyT, is quite large, so that the reaction rate becomes very tanpersensitive.
The solution below will be obtained specifically fog >> 1.

Boundary conditions for temperature and mass fractionsespond to the values associated with the
contact surface in the large scale problem, taking tfeceof expansion into account, respectively at
X — o0, Initial conditions at = 0 correspond to a jump consistent with the contact surfatefféct,
the problem has been reduced to a one-dimensioffalsthnadvectiofchemistry.

Before attempting to solve, it is useful to reduce the pnobte a formulation that, in the absence of
chemistry, is self-similar, introducing the similarityriable

1 X
1=—— [ oo (7)
pVat Jo
Then,
AYE Aye 1 Pye AT,
42— —op2- = — 2 _ " 8
ot 21 on ~ Ler on? p (8)
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(10)

Boundary conditions fo - - areyo — 0,y — 1 andT — Tg. Forn — +oo the boundary
conditions arg/o — 1,y — 0 andT — To. Initial conditions match the boundary conditions.

This completes the formulation. Next, to determine whetteition will occur, the following approach
is implemented. So far, the timewhich has been used to scale time remains unspecified. #as tHat

for sufficiently short times, theffect of chemistry will remain negligible. If the chemical soe term is

negligible, then the problem above admits a closed formtigpipwhich is readily obtained.

Next, in order to determine whether ignition will take platiee will be scaled such that the chemical
reaction contributes to only small temperature changed) that temperatures will only increase by a
fraction of the order of the inverse activation temperaftigevhich is assumed to be large. This will
allow to write the #ect of chemistry as a perturbation added to the frozen flowtisol. Finally, the
behavior of the solution to the perturbation problem willetenine whether ignition takes place.

3. CHEMICALLY FROZEN FLOW

If the chemical source term is neglected, and in the abseherpansion, the solution to the problem
outlined in the previous section is self-similar. The siolutonly depends upon time through the similar-
ity variablen and takes the form of an error function. The pressure drap &elds a particular solution
to the homogeneous problem. Accounting for the pressung dre finds that the frozen solution is

_ 1+erf(yvLeo) _ 1—erf(yvLer)
of = >, Ve = g (an
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Figure 2: Frozen flow solution, vg, To = 1, Te = 0.2, Leg = 1.0. Left: Ler = 0.5, right: Ler = 1.5. Temperature goes from
0.2 on left to 1.0 on right, fuel from 0 to 1, oxidant from 1 to 0.

> (12)
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Typical solutions to the dliusion problem are shown in Fig. 2. Théfext of the Lewis number in
the region, on the air side, where temperature is high entmghipport chemistry, is quite clear; fuel
concentration is significantly lower for the higher Lewigmher. Figure 3 explores the consequence on
local reaction rates. For a Lewis number 1.5, the peak indteeis approximately 10% of the rate for

Ler = 0.5. On this basis alone, it becomes clear that the fuel méiasility is important.

4. PERTURBATION DUE TO CHEMICAL REACTION

4.1. Approach

Next, focusing upon ignition, perturbations of the ordetha inverse activation energy are considered,
using the symbot = To/Ta << 1 (e is related to the reciprocal of the Zel'dovich number). Tinest
scaler such that chemistryfiects the problem at orderwill be determined.

Ignition should occur in the region (in space-time) where tliffusion process above leads to tem-
perature departing from the hot air value by a fraction ofeokd To resolve that region, where the
independent similarity variable becomes large; needs to be rescaled, replacing it by the local (time-
dependent) space varialdeof order unity in that region:

1-erf(p) €&
2 (1-Te/To)

This is the region where chemistry is fastest and where axiclancentration is very close to 1. However
relatively little fuel is present, which slows down chemystlthough possibly not enough to balance the
effect of temperature. Using the rescaled coordigatme finds that the frozen flow solution becomes

(13)
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Figure 3: Reaction rates based upon the frozen flow soluson,\.same parameters as in Fig.kg,= 10°, T, = 10. and both
aandb = 1. Higher curvelLer = 0.5, lower curvel er = 1.5.

Tt = To(1 - e&)pt~D/r (16)

The latter equation shows, as expected, a temperaturetihggfaom To by ordere. As to mass fractions,
Yo is close to unity. However, obviously, close to the air sithe, fuel concentration is small, of order
€“% . Itis of note thathe magnitude of the fuel concentration in the region of interest depermsithe
Lewis number, being larger thanthe magnitude of the temperature perturbation, if the kawimber
is smaller than unity, and otherwiseliér is greater than 1. Only fdrer close to unity is the reactant
concentration of ordet. Thus one needs to develop threffelient solutions for these three cases.

Under the high activation energy approximation, using ttpggasionsT = T; + €T’ and (further below)
YF = Yrt + €Yg, the exponential in the Arrhenius rate becomes

-T - —p~ -y —ep~-DiyT
exp—@ = ex 1 exp p (l+e—-e€p T)
i - e~ p 2T

17)

T~ Ao D et
If pressure drops by more than ordeover a time of order, then the magnitude of the reaction rate
drops over a time of ordat, effectively quenching any incipient chemistry so that igmitigill not take
place. Likewise, if pressure drops less than by oedever a time of ordet, the process is no longer
affected by the pressure drop. A balance will thus occur forqumreschanging by orderover a timer,
thus one writep = p(et). If pressure was scaled by its initial value so tpd) = 1, using Taylor series,

p oDy =1 etu' %’ =1+eot (18)
y dtlo
The symbolr, with positive value when pressure drops, is defined as
y—1dp
- _ i 19
o T dth (19)

Neglecting contributions of higher order énthe Arrhenius exponent becomes
-T -1
exp7a =exp— exp(T’ — & — ot) (20)
€

The constant factor expl/e will be absorbed in the time scate as defined below. The temperature
perturbationT’, the défect of difusion&, and expansiomrt all contribute at the same order. The former
results in an increasing reaction rate while the latter tioa $t down.
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If Lee = 1, LiRan’s formulation is recovered [9]. In all three cagker < 1, close to 1 or- 1), as in
Lifian, when setting the time scale so as to balance chenaiatl difusion, the transient term becomes
small compared with diusion. As a result, in all three cases the perturbation ensare reduced to
a quasi-steady formulation, in which time only appears aararpeter. Likewise, anticipating results
below, the expression for the time scalkeading to a balance betweerffdsion and reaction is also the
same in all cases:

1 E bLer (27]*)2+b(1_LeF)Leb/2€2_bLeF ox }
B To nb(ler-1)/2Qk P

(21)

in which the factor exp /e is due to the Arrhenius rate. The large numbers defined as the root of
27 e/n

1-Te/To

Whené is of order unity; is obviously large -see Eq. (13)- whitg only differs fromn by order unity,

allowing for replacement of the variabjeby the constant valug®, resulting in smaller order fierences,
which can be neglected.

%2

n'c=-log (22)

4.2. Ler closeto unity

One readily verifies that ite — 1 = O(-1/ log €) then the fuel concentration in the region whéiie of
order unity is of ordee. Thus one introduces a reduced Lewis nuribef order unity, defined by

el =g (23)

After elimination, settingr as per Eq. (21), the value providing for balance betwedfugsion and

reaction, the perturbation equations of ordeespectively to energy and fuel equations, become [9]:
AN i
4n? ot t 9&2

b
=— [g +1 (1 - _TI_—(F)))/F] exp(T' —ot—¢) (24)

10y, £y 1 Te\ L TP ,
4—772W+T6—§2—6|:€:+|(1—T—O))/F:| eXp(T —O't—f) (25)
Sincen >> 1, the first (transient) term in Egs. (24) and (25) is negliggmall compared with the other
terms, and the problem is reduced to the quasi-steady fationl

LPT LI W
Td—é:z——[é‘:'i‘l(l—_l_—o)y’:] eXp(T —O't—é:) (26)
§2 dzy,F _ 1 Tk ° ’
Td_gz_a[é‘:-i_l(l_-r_o)y': eXp(T —O't—é:) (27)

These are ordinary flerential equations i in which time only appears as a parameter. They are
combined as follows. Adding Egs. (26) and (27), one findsThatQy. = 0. One defineg as the ratio

of the hot air temperature to the adiabatic flame temperatitiee stoichiometric mixture initially at the
cold fuel temperature, which in the current context showe: 4.

Cp(To = TE)l
- 28
B o (28)
Finally, introducing the time parameter
A =texp—ot (29)
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Figure 4: Solutions to the perturbation equation, Eq. (86Jt, for g = 0.3; right, forp =1.8;b = 1.

the problem becomes:

2 2T
= BT e ) (30
This is precisely the same equation obtained by Lifian aredi [9], although the symbalsandg are
now more broadly defined, accounting for the expansioA imhich in Lifian and Crespo was simply
time, and for the departure from unity of the Lewis numbeg.iBoundary conditions ar€’(0) = O for
& = 0 (which corresponds ta — ), since far away no fuel is present thus no chemistry occutls a
from matching to the main ffusion zonedT’/d¢ — 0 for ¢ — oo.

The problem has been reduced to a second order two point agunalue problem i, in which time
only appears through parameterThis problem calls for a numerical solution. It is readilgrtsformed
into a two dimensional first order problem that is solved gsanshooting method. However, because
of the presence of the factgf on the left hand side, the resulting problem does not satidfipschitz
condition até = 0 so that one needs to use a perturbation in order to implemgial conditions,
eliminating one integration constant, which multiplies ade that grows large faof — 0 which is
inconsistent with the initial condition. The same solutemin Lifian and Crespo [9] is recovered. For
each set of data, .i.e. for given valuesBoind A, the solution increases monotonically fram = 0 at

& = 0, approaching a limiT’ (¢ — ) asé becomes large, as shown in Fig. 4. The behavior for l&rge
is consistent with the right boundary condition, which irage the slope to approach zero.

These solutions look similar in all cases. However, on thedt, for 8 < 1, the curves, which
initially moved higher for highern\, eventually move lower, while on the right, f8r> 1, the values

of T’(¢ — o0) continue growing ad increases. This ffierence becomes more apparent when plotting
values ofT’(¢ — ), vs. A, as shown in Fig. 5.

As shown in [9] and in Fig. 5, foB < 1, the solution to the problem of Eq. (30) changes signiflgant
between the case gf< 1 andg > 1. ForB < 1, the figure on the left shows that two solutions exist for
values of the time parametérbelow a critical valueA* that depends upg#, and no solution is found
for larger values of\. The upper branch has no physical meaning [9]. &Aes A*, the scaling leading
to Eqg. (30) breaks down since close to the turning painthe rate at which the solution depends upon
A, hence on time becomes large. Thus chemistry becomes \&rysiace the rate of growth of the
perturbation becomes infinite. This indicates that igniti@s taken place.

For 8 < 1, in the absence of expansion, it follows that ignition gscunconditionally at = A*.
Including expansion, however, the relationship betwaeand time is now related by Eqg. (29). As
shown on Fig. 6, for a given value of, for A below a maximum valué\n., there are two times

8



Figure 5: Casé.er close to unity. Left: Solutio@’ for & — oo to Eq. (30) forg from 0 to 0.6 at intervals 0.1, from left to
right. Right:3=1.1,1.2and 1.4b = 1.

Figure 6: Relationship betweenand time, foro- = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 from bottom po to

yielding the same value af. Only the smallest one is physically meaningful, given tia process
proceeds in time starting it 0. However forA > Anax, there is no longer any time associated with
The maximum value, obtained foe= 1/0, IS Amax = 1/€0. Ast — 1/0, the rate at whiclA increases
with time becomes zero. Thus the reaction becomes progetssiower and fectively stops.

It is thus found that i3 < 1, for ignition to take place, i.e. fok to reachA*, it must be that\* < Apax.
Thus the critical expansion rate for a given valuggef 1 is

1
eA*(B)
Forg > 1 however, a dferent situation occurs. The plot on the right in Fig. 5 shdves,tasA increases,
T’(o0) Nnow increases monotonically, although the rate of in@eéasnonotonically decreasing. On the
right side of Eq. (30), the quantity — 8T’ to the powerb, corresponds to fuel mass fraction, which
vanishes when the fuel is fully burnt, i.e. at equilibriunuc8 an equilibrium, i.eT’ = £/, is a solution
to Eq. (30); it satisfies the boundary conditionéat 0 (which corresponds t@ — oo) but not the
boundary condition toward theftlision zone. The right plot in Fig. 4 shows a solution approach
equilibrium for ¢ close to zero, and growing a@s hence time, increases. This behavior corresponds
to a combustion front moving progressively from the air ditte the difusion layer, with no runaway
ignition ever taking place at a finitd. However, in the presence of expansion, this process will en

o' (B) =

(31)
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Figure 7:Ler < 1. SolutionsT’ for & — oo to Eq. (33), forLer from 0.3 to 0.9 at intervals 0.1, from left to righd.= 1.

unconditionally whem\ — Ay, i.€. at timet = 1/0, beyond which ignition does not proceed.

In summary, the analysis shows that for 1, i.e. for a fuel Lewis number above a critical valluﬁ,
ignition will not occur, even if expansion is very small. Shuritical value is given by

_logep(To = T)/Q

loge (32)

Ler =1

However, if the fuel Lewis number is below that thresholdhitign will take place as long as the expan-
sion rate is below the critical valug dA*(B).

4.3. Ler smaller than unity

For fuel Lewis number close to unity, the rate at which fuet@msumed is of the same order as the
rate at which it is supplied by ffusion. For smaller Lewis numbers, the rate at whidfudion bring
fuel into the ignition zone is, according to Eq. (15) of or@&¥, which is now much larger than the
rate at which temperature-limited chemistry consumes tfalrdere. Thus now consumption becomes
negligible compared to supply. Thus the factor represgrihie role of fuel concentration in the reaction
rate simply becomeg-P times a constant absorbed in the time scale. A procedurdasitnithe one
above forLer of order unity yields the equation

_é'_-Z—bLeF d2 ’
A d2

This result is mentioned briefly in an appendix in [10]; cdimfis of validity and implications are only
briefly discussed.

=exp(T’' - &) (33)

Boundary conditions remain the same as above. Again, a mcaheplution is obtained, yielding the
results forT’ (& — ) shown in Fig. 7.

Here, the results are similar to the case abdawg Close to unity), foB < 1. Ignition will take place as
long as the expansion rate is below a critical value, givethbysame expression as above. However, the
time scale, given by Eq. (21), decreases rapidly wigh. Thus a similar dimensionless” will actually
correspond to a much stronger actual expansion, and igriippens significantly earlier for fuels with
smaller Lewis number. This is the case most relevant to lggirget ignition. The numerical value for
the time scale based upon Eq. (21) are comparable with sésoith numerical simulation [5, 6, 7].

4.4, Ler greater than unity

The formulation above assumed chemistry to take place at eyéntailing consumption of fuel at that
order. However if the fuel Lewis number is greater than yrdtffusion is no longer strong enough to
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Figure 8:Ler > 1. SolutionsT’ for ¢ — oo to Eq. (34),Ler = 1.1, 1.2, 1.4 and 1.6 from bottom to tdp= 1.

provide that concentration, but only values of ordEf¥. Since the reaction cannot consume fuel that
is not present, although temperatures continue depantimg fthe hot side temperature by orderthe
reaction rate is now limited by fuel concentration, to a temagure increase that is negligible compared
with the drop due to diiusion and expansion.

As a result, one needs to consider perturbations at et@erlimited by fuel concentration, denoted as
T” andy’. Using the same approach as above, a quasi-steady equisatibtained in which theféect of
temperature increase due to the reaction in the Arrheniosigenow negligible:

_62 d2T” i1} b

— —— = (£ -BT")  exp- 34

g €T e (34)

Again, boundary conditions af(0) = 0 for £ = 0, since far away no fuel is present thus no chemistry
occurs and from matching to the mainftdsion zonedT’/d¢é — 0 for £ — oo. In this case again,
solutions to the problem of Eq. (34) for (¢ — o) are single-valued and a solution exists for all values
of A, no matter how large, just as in the caselfer close to unity, whep > 1. This case is clearly not
conducive to ignition since eventually thiect of expansion will quench the chemistry.

5. CONCLUSION

The current analysis focused upon ignition in th&udiion layer that appears at the interface between
shock-heated air and hydrogen cooled by expansion durengahsient phase of the jet ignition process.
Results show the process to be quite sensitive to the fuelsLmwmber. If the fuel Lewis number is less
than a critical value close to unity, then as long as the ra&xpansion due to the multidimensional
shock topology remains below a specific threshold deteminine the analysis, ignition takes place
as a runaway mechanism. The analysis also determines tteifjnition time, with numerical value
comparable with numerical simulation results [5, 6, 7]hk fuel Lewis number is larger than the critical
value, instead of a runaway ignition, a reaction front mdves the warm air side into the filusion
region, but no matter how slow, expansion eventually quesiche front in finite time. The critical
Lewis number value for which transition between these twginnes occurs was also determined.

The significance of the fuel Lewis number is due to the follugvi If chemistry is very temperature
sensitive, then the reaction rate peaks close to the hataioéthe difusion layer, where there is ample
oxygen to support ignition, but very little hydrogen, supglfrom the cold side by massfilision.
The Lewis number is the ratio heatflilisionmass ditusion. A fuel with low Lewis number, such as
hydrogen, will difuse much faster, resulting in a significantly higher conegiain at the location where
temperature is close to the hot side temperature, whertdoigris expected to occur. For fuel Lewis
number close to unity, the rate at which fuel is consumed ihefsame order as the rate at which it
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is supplied by dtusion. For smaller Lewis humbers, consumption is negkgddmpared with supply
by diffusion, which is large compared with the inverse activatemgerature. However, for larger
Lewis numbers, chemistry could consume more fuel théiiuglon provides, resulting in much slower
chemistry; the temperature increase due to the reactidmeis $mall compared with the drop due to
diffusion and expansion.

Advective mixing such as turbulence g@godRayleigh-Taylor instability might be of some help in iing
fuels withhigh Lewis numbers. However, advectionféects equally heat and masstdsion, resulting
in a turbulent Lewis number equal to unity. Thus in hydrogas,jturbulence will likely hamper ignition
rather than promoting it, and ignition will likely occur alg quiescent sections of theffdision layer.

Furthermore, in the context of jet ignition, there is a cledationship between the size of the leak and
the expansion rate, with a larger hole leading to a sloweaesipn. Thus the current result provides an
explanation as to why only hydrogen jets appear to igniteommtrast with hydrocarbon fuels, and also
confirmation of an explanation [7] of the experimental olsagon whereby larger hydrogen leaks are
more likely to ignite [1, 2].
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