

4th International Conference on Hydrogen Safety,
12-14 September 2011, San Francisco, USA

Pressure limit of hydrogen spontaneous ignition in a T-shaped channel

Maxim Bragin, Dmitriy Makarov, Vladimir Molkov

Hydrogen Safety Engineering and Research (HySAFER) Centre, University of Ulster

- Background
- Aim and objectives
- Experiment in T-shape channel (Golub et al., 2010)
- LES EDC model
- Modelling of membrane opening
 - Instant versus finite membrane opening
- Simulation results
 - Dynamics of spontaneous ignition at different storage pressure
- Conclusions

Pressure relief device (PRD) activation

Sudden release of hydrogen into air

What is the lower pressure limit for spontaneous ignition in T-shape channel (PRD mock-up)?

Aim and objectives

Aim: Develop contemporary model for predictive simulation of the phenomenon of hydrogen spontaneous ignition during sudden release from pressure relief devices (to be applied as a tool for hydrogen safety engineering)

Objectives:

- Develop Large Eddy Simulation (LES) model based on the Eddy Dissipation Concept (EDC), full chemistry, and modelling of a burst disk opening in a finite time
- Validate the LES EDC model and simulations against experimental data by Golub et al. (2010) on spontaneous ignition in T-shape channel (mock-up PRD)
- Understand dynamics of the ignition process and explain scattering in reported experimental data (Golub et al., 2010)
- Establish the lower pressure limit for spontaneous ignition in T-shape channel

University of ULSTER Experiment (Golub et al., 2010)

Burst disk rupture at storage pressures from 13.5 to 29 bar. Reported: **no ignition at 13.5 bar**, and **spontaneous ignition at 29 bar** (private communication – ignition at **24.3 bar**)

University of ULSTER Computational domain

LES equations

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{\rho} \, \widetilde{u}_j \right) = 0$$

Momentum conservation equation:

$$\frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\overline{\rho} \widetilde{u}_{j} \widetilde{u}_{i} \right) = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu_{eff} \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} - \frac{2}{3} \frac{\partial \widetilde{u}_{k}}{\partial x_{k}} \delta_{ij} \right) \right) + \overline{\rho} g_{i}$$

Energy conservation equation:

$$\frac{\partial}{\partial t} \left(\overline{\rho} \, \widetilde{E} \right) + \frac{\partial}{\partial x_{j}} \left(\widetilde{u}_{j} \left(\overline{\rho} \widetilde{E} + \overline{p} \right) \right) = \frac{\partial}{\partial x_{j}} \left[\frac{\mu_{eff} c_{p}}{\Pr_{eff}} \frac{\partial \widetilde{T}}{\partial x_{j}} - \sum_{m} \widetilde{h}_{m} \left(-\frac{\mu_{eff}}{Sc_{eff}} \frac{\partial \widetilde{Y}_{m}}{\partial x_{j}} \right) \right] + \widetilde{u}_{i} \mu_{eff} \left(\frac{\partial \widetilde{u}_{i}}{\partial x_{j}} + \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} - \frac{2}{3} \frac{\partial \widetilde{u}_{k}}{\partial x_{k}} \delta_{ij} \right) + \sum_{m} R_{m} H_{C}$$

Species conservation equation:

$$\frac{\partial}{\partial t} \left(\overline{\rho} \, \widetilde{Y}_H \right) + \frac{\partial}{\partial x_j} \left(\overline{\rho} \, \widetilde{u}_j \, \widetilde{Y}_m \right) = \frac{\partial}{\partial x_j} \left(\frac{\mu_{eff}}{Sc_{eff}} \, \frac{\partial \, \widetilde{Y}_m}{\partial x_j} \right) + R_m$$

• The effective viscosity in RNG SGS model is calculated as

$$\mu_{eff} = \mu \left[1 + H \left(\frac{\mu_s^2 \,\mu_{eff}}{\mu^3} - 100 \right) \right]^{1/3}, \text{ where } \qquad \mu_s = \overline{\rho} \left(0.157 \, V_{CV}^{1/3} \right)^2 \sqrt{2 \widetilde{S}_{ij} \widetilde{S}_{ij}} \\ S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right]$$

- In highly turbulent flows, $\mu_{e\!f\!f} \approx \mu_s$ and the RNG model reduces to Smagorinsky model in laminar flow regions the argument of Heaviside function becomes negative and the model recovers molecular viscosity, $\mu_{e\!f\!f} = \mu$.
- The effective Prandtl and Schmidt numbers are calculated following the RNG theory by Yakhot purely from the theoretical equation

$$\frac{1/N_{eff} - 1.3929}{1/N - 1.3929} \bigg|^{0.6321} \bigg| \frac{1/N_{eff} + 2.3929}{1/N + 2.3929} \bigg|^{0.3679} = \frac{\mu}{\mu_{eff}}$$

University of ULSTER EDC combustion model 1/2

- Eddy Dissipation Concept (EDC) gives an expression for a combustion rate based on an assumption that chemical reactions occur in so-called fine structures of Kolmogorov's scale, where the dissipation of turbulence energy takes place.
- In EDC model a source term in species transport equation is modelled as:

$$R_{m} = \frac{\rho(\xi^{*})^{2}}{\tau^{*} [1 - (\xi^{*})^{3}]} (Y_{m}^{*} - Y_{m})$$

 R_m is a net rate of production of specie *m* by chemical reactions,

 $\boldsymbol{\xi}^{*}$ is the length fraction of the fine scale turbulent structures where the reaction occurs,

 Y_m^* is the fine scale species mass fraction (specie *m*) after reacting over the time au^* ,

 Y_m is a species mass fraction for specie *m* in the surrounding fine scales state.

University of ULSTER EDC combustion model 2/2

• The length fraction of fine structures: $\xi^* = 2.1317 u_{\eta} / u_{SGS}$

where $u_{SGS} = \mu_t / (\rho \cdot L_{SGS})$ and $L_{SGS} = 0.157 V^{1/3}$

and the Kolmogorov's velocity $u_{\eta} = \left(\frac{\mu \cdot u_{SGS}^3}{\rho \cdot L_{SGS}}\right)^{1/4}$

- Characteristic sub-grid eddy and Kolmogorov <u>timescales</u> are: $\tau_{SGS} = L_{SGS} / u_{SGS}$ and $\tau_{\eta} = \left(\frac{\mu \cdot L_{SGS}}{\rho \cdot u_{SGS}^3}\right)^{1/2}$
- The volume fraction of the fine scales is calculated as ξ^{*^3} and species are assumed to react in the fine structures over a time scale $\tau^* = 0.4082\tau_{\eta}$.

It is assumes that all the fine scales in the cell are perfectly stirred reactors with a residence time τ^{*}

Chemistry mechanism

Mechanism for H2 combustion (with NOx), 13 species and 37 reactions

Unite are cm3 mol e K	and K			O+O+M=O2+M	6.17E+15	-0.50	0.00
		0.00	70.20	H2O2+H=H2O+OH	1.E+13	0.00	15.02
	2.5+14	0.00	70.30	H2O2+H=HO2+H2	4.79E+13	0.00	33.26
H2+U=UH+H	1.8E+10	1.00	36.93	O+OH+M=HO2+M	1.E+16	0.00	0.00
H2O+O=OH+OH	5.9E+09	1.30	71.25	H2+O2-OH+OH	1 7E+13	0.00	200.0
H2+OH=H2O+H	1.17E+09	1.30	15.17		1 025.44	0.00	210.02
H+O2+M=HO2+M	2.3E+18	-0.8	0.00		1.020+14	0.00	319.02
H2/1./ H2O/6.5/ O2/0.4/ N2	/0.4/			0+N0=N+02	3.8E+09	1.00	1/3.11
H+HO2=OH+OH	1.5E+14	0.00	4.20	H+NO=N+OH	2.63E+14	0.00	210.94
H+HO2=H2+O2	2.5E+13	0.00	2.93	NO+M=N+O+M	3.98E+20	-1.50	627.65
OH+HO2=H2O+O2	2 F+13	0.00	4 18	N2+M=N+N+M	3.72E+21	-1.60	941.19
	1 8E+18	-1.00	0.00	N2O+O=NO+NO	6.92E+13	0.00	111.41
		-1.00	0.00	N2O+O=N2+O2	1.E+14	0.00	117.23
	2/0.4/		0.00	N2O+N=N2+NO	1.E+13	0.00	83.14
		-2.00	0.00	N+HO2=NO+OH	1.E+13	0.00	8.31
H2/1./ H2O/6.5/ O2/0.4/ N2	/0.4/			N2O+H=N2+OH	7.6E+13	0.00	63.19
H02+H02=H2O2+O2	2.E+12	0.00	0.00		5 01F+11	0.50	8 31
H2O2+M=OH+OH+M	1.3E+17	0.00	190.38		1 265.12	0.50	0.01
H2O2+OH=H2O+HO2	1.E+13	0.00	7.53		1.200+12	0.50	0.31
O+HO2=OH+O2	2.E+13	0.00	0.00	NO+HO2=HNO+O2	2.E+11	0.00	8.31
H+HO2=O+H2O	5.E+12	0.00	5.90	HNO+HO2=NO+H2O2	3.16E+11	0.50	8.31
H+O+M=OH+M	6.2E+16	-0.60	0.00	HNO+H=NO+H2	1.26E+13	0.00	16.63
		0100	0100	HNO+M=H+NO+M	1.78E+16	0.00	203.7

GUTHEIL, E., BALAKRISHNAN, G. & WILLIAMS, F. A. (1993) Structure and extinction of hydrogen-air diffusion flames. IN PETERS, N. & ROGG, B. (Eds.) *Reduced kinetic mechanisms for applications in combustion systems.* New York, Springer-Verlag

University of

University of ULSTER Burst disk opening sections

Burst disk opening process was approximated by a 10 step process.

Sections were open from 1 to 10 at times calculated according to the table in the next slide.

Following Spence & Woods (1964), the following formula was used to obtain the rupture time of a burst disk:

$$k = k \left(\frac{\rho b d}{p}\right)^{\frac{1}{2}}$$

where ρ – the density of the diaphragm material (annealed copper), b and d are the thickness and the diameter of the diaphragm, k – constant, 0.92 p – driving pressure

Opening times of sections for each of the simulations are listed below:

Section		2	3	4	5	6	7	8	9	10
Opening time, µs [1.35 MPa case]	0	4.7	9.4	14.2	18.9	23.6	28.4	33.1	37.8	42.6
Opening time, µs [1.65 MPa case]	0	4.3	8.6	12.8	17.1	21.4	25.6	29.9	34.3	38.5
Opening time, µs [2.43 MPa case]	0	3.5	7.1	10.6	14.2	17.7	21.3	24.8	28.3	31.9
Opening time, µs [2.9 MPa case]	0	3.2	6.5	9.7	12.9	16.2	19.4	22.6	25.9	29.1

University of ULSTER Instant vs finite opening time

Simulation results

P=29 bar

Ignition initiated in the radial vent channel and extinguished.

Combustion is reinitiated in a number of spots outside the PRD.

Concentration of hydrogen in these spots just before the ignition is in the range 29-36% by vol.

P=24.3 bar

Ignition is initiated in the emperature, radial channel (closer to the upstream wall second shock reflection) similar to 29 bar case

м

Hydroxyl (OH) mole fraction

Reignition outside is not observed.

Process took 10µs and was experimentally registered ("ignition" in private communication)

P=16.5 bar

Temperature

Ignition spot is located in the axial channel (not in a symmetry plane). The combustion propagates upstream (until oxygen is consumed)!

Iso-surfaces are: Blue – 550 K, Green – 1500 K, Red – 2400 K

P=16.5 bar

OH mole fraction

Ignition is confirmed by a hydroxyl mole fraction distribution.

Light sensor in experiments was located outside and could not have registered ignition.

Iso-surfaces are: Blue - 0.0002, Green - 0.002, Red - 0.02

P=13.5 bar – no ignition

Conclusions

- The LES model based on EDC with detailed kinetics and inertial burst disk was successfully applied to reproduce and explain experimental observations in T-shape channel (PRD mock-up).
- The lower pressure limit for spontaneous ignition in a Tshaped PRD is established: there is no ignition at storage pressure 13.5 bar; there is ignition followed by selfextinction at pressures 16.5 and 24.3 bar; and there is "sustainable" ignition (reignition outside the channel) for storage pressure 29 bar.
- The ignition is located in the are of the second reflection of initial shock and where the concentration of hydrogen in air is in the range 29-36% vol.
- The model can be used as a contemporary tool for design of innovative pressure relief devices.

MSc in Hydrogen Safety Engineering (distance learning course): http://campusone.ulster.ac.uk/potential/postgraduate.php?ppid=24