Sep. 12, 2011 ICHS 4th meeting

Numerical Simulation and Experiments of Hydrogen Diffusion Behavior for Fuel Cell Electric Vehicle

M. Matsumoto K. Shimizu

Contents

- Background
- Objective and Approach
- Modeling of Turbulence
 - Jet Flow
 - Wake Flow
 - Wall Turbulence
- Application to FCEV (Euel Cell Electric Vehicle)
- Conclusion

Background

Honda's hydrogen technology

Hydrogen safety system

Requirement

Efficient detection using few H₂ sensors

How does leaked hydrogen diffuse into complexly shaped spaces?

Significant need for hydrogen diffusion simulations

Objective & Approach

- **Objective** To develop a simulation method for hydrogen leaks into complexly shaped spaces.
- **Approach** Turbulence elements in FCEVs were classified into three types. Appropriate calculation methods were established to each.

Modeling of Turbulence - Jet Flow

k-\omega SST model is most accurate for jet flow.

Modeling of Turbulence - Wake Flow

Steady-state calculations using the candidate models could not express wake flow.

Modeling of Turbulence - Wake Flow

Time-averaged unsteady-state calculations are necessary to express the powerful fluctuations of wake flow.

Modeling of Turbulence - Wall Turbulence

RSM model is most accurate for wall turbulence.

Modeling of Turbulence - Wall Turbulence

RSM model can express the behavior of the hydrogen in spreading along the wall surface.

Application to FCEV – Method

Three parts partitioning method

	1st part	2nd part	3rd part
Image	Boundary data to 2nd part	Boundary data to 3rd part	
Steady or unsteady	Steady-state	Time-averaged unsteady-state	Unsteady-state
Compressib ility	Compressible	Incompressible	Incompressible
Dominant turbulence elements	Jet flow	Wake flow	Wall turbulence
Turbulence model	k-ω SST	RSM	RSM

Application to FCEV – Conditions

Application to FCEV – Results

Simulation and experiment results correspond well, even in complexly shaped underfloor spaces.

Summary & Conclusion

Conclusion :

These methods can be used to accurately simulate the hydrogen leaks in complexly shaped spaces.

Our dream is the realization of a hydrogen society with high-level hydrogen safety

and to keep

Blue Skies for our Children