œ

Numerical investigation of a mechanical device subjected to a deflagration-to-detonation transition

14 September 2011

A. Beccantini, P. Galon, V. Faucher

CEA, DM2S/SFME/LTMF CEA, DM2S/SEMT/DYN

Introduction

- Investigation of the effects of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device (long tube, L = 7 m, D = 0.245 m, filled with an irregular set of obstacles of different shape).
 - Amongst the most dangerous regimes
 - deflagration-to-detonation transition (DDT);
 - detonation initiation due to shock reflection.
 - Concerning a DDT, there is some uncertainty regarding the time and the location of the transition. It depends on
 - nature of the mixture;
 - shape and nature of the obstacles;
 - roughness of the wall.

N

Introduction (2)

CECI

- Detailed numerical simulation of DDT and of the run-up distance requires:
 - capability of dealing with flows at all speeds (from low Mach number to fast flows);
 - detailed chemical model;

. . .

- correct representation of the wall roughness and of the obstacles, and to perform fluid structure interaction;
- capability of computing boundary layer.
- Since we are not able to perform such computations, we have followed a different strategy (research for a regime more dangerous than the possible one).

Introduction (3)

- Three stages.
 - 1. We consider different 1D combustion regimes:
 - steady flames;
 - DDT at the flame;
 - detonation initiated by the shock reflection.

Initiation point for the combustion

P=P(t)

2. To select the most dangerous regime, we apply P = P(t) to an infinite cylinder in axisymmetric deformation with the same radius and the same material properties as the mechanical device.

œ

Introduction (4)

Ê

3. For the most critical combustion regime in the step 2, we compute the flow inside the mechanical device and evaluate stress and strain.

Steady deflagrations

• 1D constant speed deflagrations.

ന്ലാ

σ

• Before the interaction with the wall, the non-dimensional solution is a function of $x/(t\sqrt{R_uT_0}), K_0/\sqrt{R_uT_0}$

ICHS2011, September 12-14, 2011 San Francisco, USA

DDT at the flame

• **Simple model :** the DDT occurs at the flame of a steady deflagration.

• Two non-dimensional parameters:

~

$$\frac{L_d}{L}, \frac{K_0}{\sqrt{R_u T_0}}$$

DDT at the flame. Fast flame (2)

WDF, K*o=0.5

ICHS2011, September 12-14, 2011 San Francisco, USA

00

Detonation caused by the shock reflection

- The non-dimensional solution is function of K_0^* only.
- Three stages.

Q

- 1. Before the interaction of the wall, we have a steady deflagration.
- 2. The interaction of the precursor shock with the wall generates a left-travelling detonation, moving in a right travelling unburnt gas (CJDT or SDT).
- 3. The interaction of the right travelling flame with the left travelling detonation wave generates a non reactive flow (everything is already burnt) consisting in left and right travelling shock waves.

Detonation caused by the shock reflection. Stage 2

- For $K_0^* = 0.5$, CJDT pressure is 71.2 pressure behind the Taylor wave is 70.7.
- For $K_0^* > 0.6$ we have strong detonation

Infinite cylinder investigation

• We suppose that the material obeys to a isotropic von Mises low.

For the infinite cylinder, we have the maximum strain (around 3.5 %) in case of deflagration-to-detonation transition at the flame, K^{*}₀ between 0.5 and 0.7.

Mechanical device investigation

cen

- We use the CEA EUROPLEXUS code, with the Reactive Discrete Equation Method for the reactive flow computation (on a Arbitrary Lagrangian Eulerian mesh) and a Lagrangian Finite Element approach for the discretization of the mechanical device.
 - We take as initial solution, the steady deflagration with $K_0 = 0.5$, just before the interaction of the precursor shock with the wall
 - We initiate the detonation at the flame
 - In this case we obtain a strain lower than 4%, apart from a little region in which it reaches the value of 19%

Conclusion and future work

- In order to investigate if a (long) mechanical device can afford a combustion of hydrogen-air, we have used a simplified model.
 - Using this model, we have considered the case of DDT at the flame and detonation initiation due to shock reflection.
 - Once established the most critical situation, we have performed a Fluid-Structure interaction computation.
 - Material model should be improved by taking into account the strain time variation.

DDT at the flame. Slow flame

œ

- If the flame velocity is negligible with respect to the flame speed, non-dimensional solution depends on L_d/L only. Low Mach number approximation: thermodynamic pressure P = P(t).
- Two stages
 - 1. Slow defigration. We suppose that in the burnt and unburnt region we have constant states. The flame behaves like a permeable piston.

$$b \xrightarrow{\delta m} \delta q = 0 \quad u$$

2. Detonation at the flame

DDT at the flame. Slow flame (2)

- Equation of state $P = \rho_u R_u T_u = \rho_b R_b T_b$.
- Equation of conservation of the total mass and total energy

$$L_{d}\rho_{b} + (L - L_{d})\rho_{u} = L\rho_{0}$$

$$\left(L_{d}\rho_{b}\int_{0}^{T_{b}} d\tau \left\{c_{v,b}(\tau)\right\}\right) + \left((L - L_{d})\rho_{u}\int_{0}^{T_{u}} d\tau \left\{c_{v,u}(\tau)\right\}\right) = L\rho_{0}\int_{0}^{T_{0}} d\tau \left\{c_{v,u}(\tau)\right\} + L_{d}\rho_{b}q.$$

• In the unburnt mixture an isentropic compression occurs, i.e.

$$0 = \delta q = c_{v,u} dT_u - \frac{P}{\rho_u^2} d\rho_u, \quad \text{i.e.} \quad 0 = \frac{1}{\gamma_u(T_u) - 1} \frac{dT_u}{T_u} - \frac{d\rho_u}{\rho_u}$$

• Unknowns: P, ρ_u , T_u , ρ_b and T_b (five unknowns) as function of L_d .

œ

DDT at the flame. Slow flame (3)

- If the DDT occurs at $L_d = 0$, we have a 1D detonation.
- If the DDT occurs at $L_d \approx 1$, we have a uniform pressurization of the mechanical device.

Detonation caused by the shock reflection. Stage 3

 \tilde{C}

17

- The larger the flame speed, the larger the maximum value of *P*.
- The larger the flame speed, the lower the decreasing of the pressure in time.