

Uncertainties in Explosion Risk Assessment for a Hydrogen Refuelling Station

Koos Ham, Matthijs de Maaijer, Vincent van den Hoogenband, Marcel Weeda, Jaco Reijerkerk and Gert Jan Kramer

The THRIVE project – <u>T</u>owards a <u>Hydrogen</u> <u>R</u>efuelling <u>Infrastructure for Ve</u>hicles

Joint effort of:

- Energy research Centre of the Netherlands (ECN) coordinator
- TNO
- Linde Gas Benelux B.V.
- Shell Global Solutions International B.V.

The THRIVE project – Towards a Hydrogen Refuelling Infrastructure for Vehicles

Objectives:

- Requirements for the development of a sustainable infrastructure of hydrogen as a car fuel in The Netherlands.
- Evaluation of economic drivers and environmental opportunities.
- Scenarios for expected growth of this infrastructure between 2010 and 2050.
- Requirements for a (standardised) QRA model for HRS, to be formalised in Dutch legislation

2030 1,096

QRA requirements in The Netherlands

Objectives:

- Environmental legislation: QRA necessary for licence to operate
- Land-use planning: no vulnerable objects within risk zones
- Emergency preparedness: scenarios determined by QRA

Regulatory instrument:

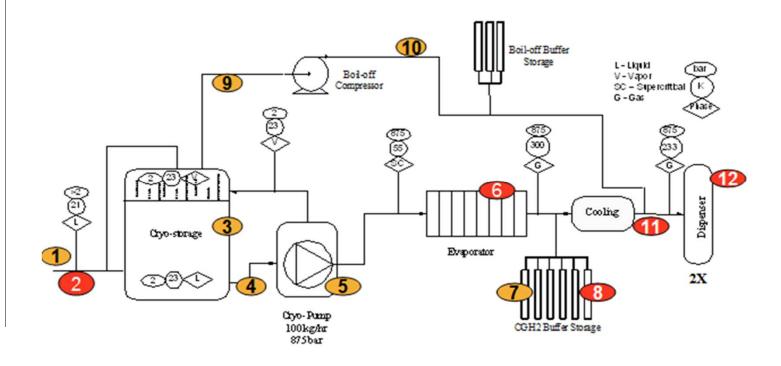
- Generic set of scenarios: loss of containment events (LOCs)
- Generic set of failure frequencies, for each LOC
- Prescribed methodology, in Guidelines HaRi-2009 and software

QRA for 'new' activities should -in principle- follow the existing structure

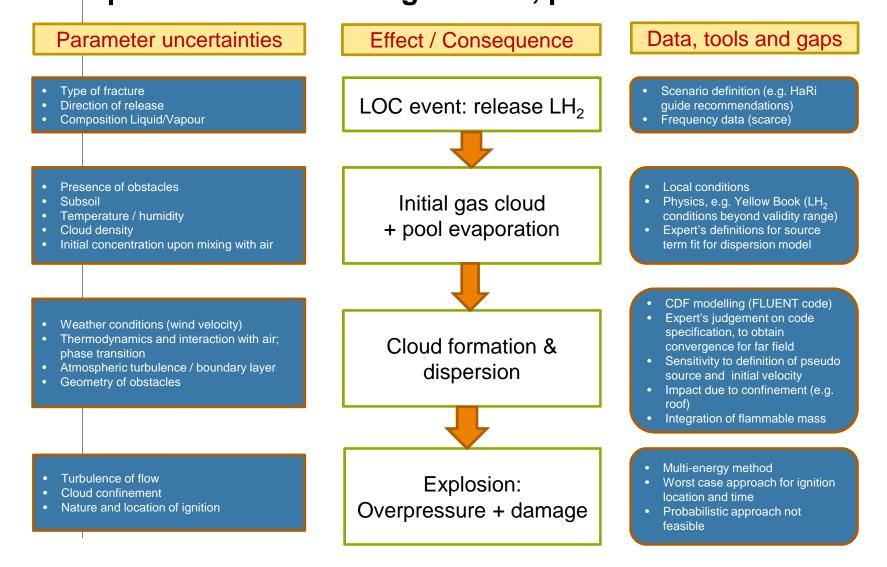
The THRIVE project – the risk study

- Project included a study into possible safety risks of accidents with hydrogen in a hydrogen refuelling station (HRS)
- What is needed in risk assessment methodology for HRS within Dutch QRA regulations? Would HRS fit within risk contours of LPG?
- Focus on risks to the surroundings (the built environment)

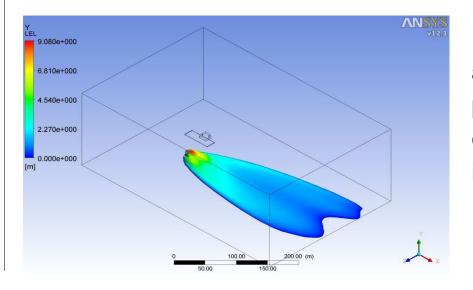
Uncertainties and knowledge gaps in performing QRA for an HRS


- 1. (Variations in) type of refuelling installation for hydrogen: technology and lay-out
- 2. Uncertainties in scenario identification: which LOC's are credible?
- 3. Knowledge gaps in effects modeling and consequence assessment: how to deal with extreme conditions of temperature, pressure and gas density?
- 4. Uncertainties in failure rates and incident frequencies

Reference refuelling station for THRIVE


- LH₂ delivery (truck) and storage in above-ground cryogenic tank
- Transfer by Cryo-pump, via evaporator, to high pressure CGH₂ buffer
- Refuelling of CGH₂ to vehicles via dispenser, at p ~ 75 MPa
- Boil-off recovery and storage is provided.

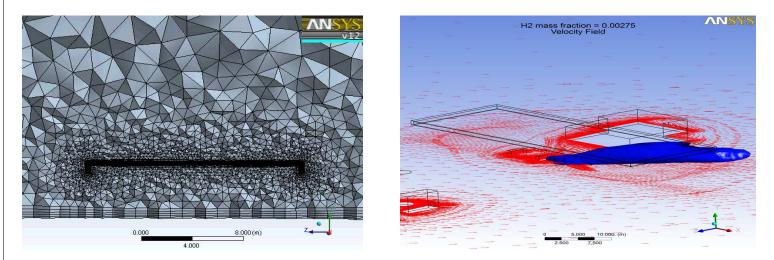
Explosion risk modelling: effects, parameters and tools



Dispersion calculations with CFD

- CFD is increasingly used to study complex dispersion phenomena. It provides insight into influences on dispersion, not available from other models.
- No validated models are available for modelling dispersion of a large spill of liquid hydrogen.

Models need to be developed and validated in order to properly assess the potential consequences of LOC events in an HRS.

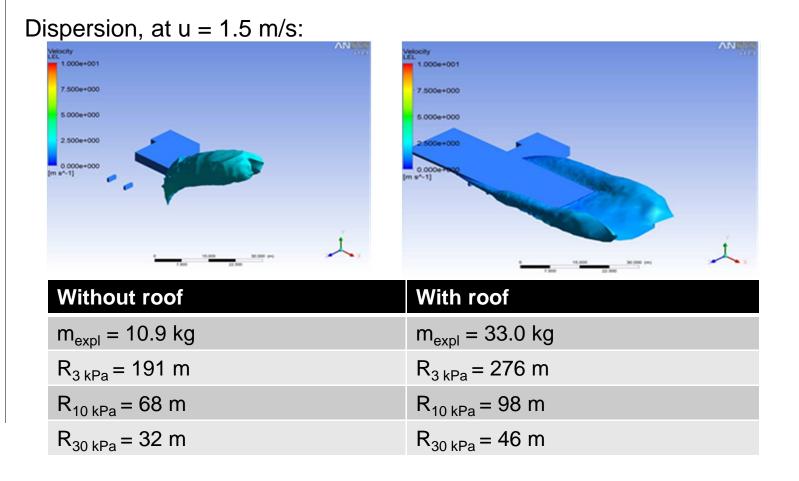


Dispersion calculations with CFD

Known challenges in atmospheric dispersion calculation with CFD:

- Source term modelling: strong influence on outcome; high velocity releases require fine local mesh and long calculation times.
- Atmospheric boundary modelling: velocity and turbulence of boundary layer profile; determination of roughness and turbulence model.

The use of CFD for atmospheric dispersion calculation is still under development. Ideally, the used models should be validated with actual releases.



Example Case 11a: Pipe rupture between buffer storage and dispenser

Release: Q = 1.36 kg/s, at p = 85 MPa; $D_{pseudo} = 85$ mm

What is needed for an appropriate QRA?

- A clear and closed design of the installation, its way of operation, its equipment and control systems and the spatial layout.
- Identification of realistic scenarios by LOPA and/or HAZOP (including efficacy of protective measures).
- Consensus about the incident scenarios (loss of containment events), involving the 'minimum setting' as per [HaRi, 2009] and modified for the hydrogen specific aspects and system designs.

innovation

What is needed for an appropriate QRA?

- State-of-the-art effect models for release, evaporation and dispersion of hydrogen
- Modelling recommendations from recent research
- Validation of models (particularly for dispersion modelling with CFD tools)
- Further experimental research on:
 - evaporation and dispersion of LH₂ releases,
 - explosion effects of large scale hydrogen clouds
 - heat radiation from hydrogen fires

What is needed for an appropriate QRA?

- Validation and further improvement of failure frequencies for hydrogen equipment. Demonstrate whether properties of this equipment justify the application of specific failure data, deviating from the generic [HaRi, 2009] figures.
- Evaluation of the ignition probability of hydrogen releases and dispersed mixtures of hydrogen-air, and possibly modification of the generic [HaRi, 2009] figures, thus accounting for hydrogen's high reactivity.

Acknowledgment

The THRIVE project was gratefully supported by:

NL Agency (formerly SenterNovem), of the Dutch Ministry of Economic Affairs, Agriculture and Innovation

THRIVE partners are acknowledged:

ECN, Linde Gas Benelux, Shell Global Solutions and TNO

Thank you for your attention

koos.ham@tno.nl