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ABSTRACT 
Time and human factor represent main sources of uncertainty in probabilistic risk analysis. After 
defining types and influence of uncertainty in system models, with particular attention to difference 
between aleatory and epistemic uncertainties, a new methodology, Dynamic Event Tree Analysis 
(DETA), developed in order to study dynamic behaviour of systems is proposed. It is presented 
through its peculiar features and mathematical formulation while field of application is discussed. 
Particular emphasis is placed on “transient lenght” to highlight influence of changing variables on 
components reliability. Besides, in the aim to include in dynamic Event Tree Analysis the assessment 
of human reliability, we chose, among  numerous models worked out in last years, Human Cognitive 
Reliability (HCR) method. In fact, it provides an immediate estimation of human error probability in 
accord to experimental parameters related to specific context characterizing a Weibull Cumulative 
Distribution. Through a case-study referring to fire scenarios-chosen for relevance of interaction 
between operators and safety systems-potentiality deriving from exploiting together these two 
methods are shown. Results indicate that, in critical conditions during accidental transient, time 
resilience of automatic systems appears larger than operator’s one, suggesting therefore choice of 
configuration where man precedes automatic systems rather than inverse configuration. Finally, 
uncertainties affecting model and parameters of both methodologies are recognized and some 
proposals for their treatment are suggested. 

SOURCES OF UNCERTAINTY IN RISK ASSESSMENT 
Often, in risk analysis, system is not defined in an exact way and/or knowledge of dynamics is 
uncompleted. It yields uncertainty on model parameter values and on structuring hypothesis. This 
uncertainty spreads through the model, causing variability in outputs. Therefore, the assessment of this 
uncertainty is fundamental. 

Uncertainties in risk analysis come from complexity of considered systems and from consequent 
troubles in modelling, from lack of data related to failures and accidents, from limitation of used 
methods. Systematic treatment of such uncertainties needs a classification in two different types : 

1. Aleatory uncertainties 

2. Epistemic uncertainties. 

First one is related to inherently stochastic phenomena. Those uncertainties can be described through 
probabilistic approach. 

Epistemic uncertainties refer to uncompleted knowledge of parameters and phenomena. This 
“ignorance” is reflected on one hand on uncertainty of parameter values and on other on uncertainty of 
models chosen to describe phenomena. It is present in all risk components:  

1. Incompleteness and imprecision in defining scenarios. 

2. Uncertainty of probability values of events conditioning evolution of scenarios. 

3. Not complete adherence to reality in evaluating consequences. 

These epistemic uncertainties are due both to intrinsic inability of models to represent reality both to 
lack and reliability of model data. 

METHODS FOR ASSESSMENT OF TIME INFLUENCE AND HUMAN FACTOR 
Dramatic influence of time and human factor during accidental dynamics in assessment of epistemic 
uncertainty can be calculated through methods described in following paragraphs. 

Considering accidental time evolution, also defined “transient length” (or time between beginning and 
end of perturbation, meant as return of system in a safe state or deviation toward top event or 
irreparable state, [1]), we need to assess whether process variables during transient deviate 



 

significantly from previous value, and their influence on system reliability. Also time sequence of 
systems operating during transient can affect outputs, for example in repairing operations, and then it 
cannot be omitted.  
Finally, effectiveness of human intervention during accident evolution could dramatically depend 
upon both features, e.g. in case of  intervention from control room. 
These features could be not determinant in the aim of risk assessment, for example when evolution of 
physical variables is not enough quick to be significant in transient length, or so fast to make problem 
deterministic (certainty of event related to variation), or yet when evolution does not significantly 
change values of failure rates of system components. 
Same system could be structured in such a way not to require human operations, or repairing and 
maintenance operations. A lot of problems, however, are in intermediate situations, where evolution of 
process variables during transient is relevant and affects value of failure rates of some components in 
deterministic way, modifying risk related to analyzed system. 
Then, for adequate treatment of such systems, we need to match stochastic features, due to component 
failure, with deterministic ones due to evolution of physical variables of system.  
Considering the number of dynamic systems, it is clear the insufficiency of static techniques for risk 
analysis. In particular, static analysis of dynamic systems, is always followed by uncertainty on 
calculated risk, due to purely dynamic features of system: the more relevant such features, the less 
reliable analysis output. 
An integrated way for assessment of human reliability in dynamic analysis is provided by Bayesian 
Networks: They are some specific graphical models introduced by Pearl, Lauritzen and Spiegelhalter. 
The random variables of a probabilistic model are described with the vertices of a graph, where edges 
describe their dependencies measured with conditional probabilities. A great interest of BNs is to 
provide an efficient tool for modelling in a simple and readable way the most probable links between 
events of different nature (expert opinion, feedback experience, .) using conditional independence 
between random variables. Bayesian Networks, by describing the main conditional probabilities 
between variables, allow to compute easily the joint probability distribution of all the variables 
involved in a complex process [2] and can be easily updated as new evidence becomes available [3]. 
For these reasons, BN have been recently used as a tool to quantitatively describe how human 
operators process the information they receive when the interdependency between I&C systems and 
human operators are considered is similar to appropriate mathematical model [4]. 

DYNAMIC EVENT TREE ANALYSIS 
Bayesian Networks are one of different suitable methods of dynamic analysis, each one characterized 
by some limitation due to basic hypothesis and by computational complexity that makes them not 
much attractive in comparison with classic methods. Anyway, it is possible to make some 
simplification, to allow a quicker calculation of risk and introducing further hypothesis, that restrict 
applicability of method but not hinder to face a lot of real situations. We could then carry out classic 
static analysis providing  indication of related uncertainty through simplified dynamic analysis and 
closely examining only those features which require deeper analysis, since critical in risk assessment. 
For this purpose, we propose a method identified as “simplified dynamic ETA”; it is characterized by 
hypothesis that make it particularly suitable to treat a class of problems in efficient and rapid way, in 
order to improve  results achievable with classic ETA. 
ETA allows quantitative assessment of probability of searched Top Events (TE) deriving from basic 
events for studied system. Anyway, it is affected by limitation about system dynamics, i.e. time 
depending factors which affect reliability, as maintenance and aging of the system, evolution of 
process variables during accidental transient (due to basic event) and possible human intervention. 
These factors involve uncertainty in determining probability of TE, which, added to imprecision about 
available data, contribute to error in estimate of such probability. Therefore, we discriminate between 
static ETA (not considering time evolution), semi-dynamic ETA (considering only maintenance and 
aging, but not accidental transient) and dynamic ETA (considering accidental transient too); latter 
difference due to limits of applicability of dynamic method. 
Kind of dynamic ETA proposed keeps same structure of corresponding static analysis, but uses values 
of reliability of modified systems compared with static ones, considering time dependant factors: 

1. Maintenance and aging of system, linking evolution of process variables during accidental 
transient and typical failure rates of components; 



 

2. Possible human intervention, also including efficiency with regards to evolution of process 
parameters; 

Dynamic ETA has the big merit to be simple and easy to apply, not requiring efforts of analysis and 
calculus higher than ones required for classic ETA. On the other side, this methodology has some 
constraint on applicability, unlike other methodologies mathematically more exact. This constraint, of 
course, depends on time factor, in particular on characteristic periods of examined system. So, 
dynamic ETA can apply when accidental transient length is: 

1. comparable with time ranges where, for each involved component, values of process variables 
keep inside right operating range; 

2. considerably lower than time range between a maintenance operation and the following, or 
than “mission time” of the system. 

In spite of such limitations, there are a lot of systems fulfilling such hypothesis and making dynamic 
ETA a very interesting methodology. 
In this case the reliability calculated at the time of interest (time of accident event) has to be modified 
[5-7] by a multiplication factor (B), depending on certain time ranges: 

− The accident time evolution duration (Δt), in which some process variables could evolve till to 
pass the limit values for the components good-working; 

− The minimum component good-working time range1 Δt* 
If these time range are of comparable length, but enough shorter than the mission time of the system 
(of the time between two maintenance interventions), the reliability can be evaluated like: 
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where tc is the time when component is appealed to act, and λ(t) the value of failure rate defined as  
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The failure rate (λ) is considered variable in time, for aging by an “aging factor” k (linear dependency 
at first approximation) which increases its value, and for maintenance by a more complex factor which 
decrease its value, depending on mean time between two maintenance interventions (τ), the number of 
maintenance intervention already made (n)2, and the system age (s).  

                                                 
1 The trend of each process variable during accident evolution may influence the component good-working, i.e. 
each of them defines a time range in which its value remains in the limits of correct working; it is enough that 
such limits are passed by one of the process variable for making the component not to work (reliability zero). It 
is the intersection of such time ranges, which defines the good-working time range for the component. 
Mathematically it can be expressed by: 
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t j,limit is the time in which the process variable Aj(t) passes the limit of good-working for the component, so that 
in case of linear trend like Aj(t)=aj*t, it will be tj ,threshold=Aj, threshold/aj.. In the following picture t* is minj(tj,limit). 
2 n(s) is entire and constant in the time between two maintenance interventions, increasing of a unit passing from 
these time ranges. Its value depends on component age, which based on maintenance programs would have been 
undergone a certain number of intervention yet. 
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Figure 1 Relation between accident transient and operating  time of safety systems. 
 
Moreover, reliability trend, being exponential function, is sensitive only to remarkable variations of B. 
 
For the value of Δt*, two limit cases could be considered: 

1. Δt* 0, B ∞, so R(t) 0 (the component does not work). 
2. Δt* Δt, B 1, so R(t)=R(s), s=tc (the component reliability is independent of process 

variable evolution). 
Generally, the smaller Δt*, the less the component reliability, considering the same accident evolution 
time range Δt. 

HUMAN FACTOR ANALYSIS 
Human factor plays a basic part in system safety, for it is involved from design to building, and in 
management and operating. In fact, it’s commonly recognized that human error gives rise to most of 
relevant accidents in industrial plants, or represents main cause.  

Different methods were proposed to classify human behaviour. Particularly effective results the model 
proposed by Jens Rasmussen, used in several applications [8-11], which has the merit to reduce to few 
categories the almost unlimited number of types. This model discriminates human reactions in accord 
to following behaviours: 

- immediate response (or skill-based): nearly instantaneous reaction of operator respect to facts 
or circumstances, pointed out by signal, noise, unexpected scenario. This kind of behaviour is 
determined from training and experience of operator in facing emergencies. Human error 
probability is very low 
- Rule-based response: implementation by operator of a sequence of actions, based on known 
procedures. Readiness of response is lower than in former case 
- knowledge-based response: it deals with behaviour of higher level, without appealing to rules 
or procedures. The operator uses available information and his own cognitions, in an 
autonomous and creative way, to decide about actions to carry out. 

Indicatively, human error probabilities for the three types of behaviour spread, also overlapping, in the 
range between 0.5 and 10-4 (or less) per intervention, as shown in table 1 [12]. 
 

Table 1 – Human error probability in accord to type of behaviour 
   Type of behaviour          Indicative range of HEP 

Skill-based 

Rule-based 

Knowledge-based 

5 x 10 –5- 5 x 10 –3 

5 x 10 –4- 5 x 10 –2 

5 x 10 –3- 5 x 10 –1 
 

Carrying out a task will involve generally all levels, while single action will be referable to one of the 
three levels. 
This approach is focused on the mechanisms generating behaviour in the actual, dynamic work context 
and needs a representation at the higher level of functional abstraction than the level used for task 
analysis [13]. 
Two of the better known methods of second-generation HRA approaches—CREAM and 
ATHEANA—both emphasise that the likelihood of something being done incorrectly is determined by 
the performance conditions rather than by inherent human error probabilities, and if the context often 



 

may be the ‘error forcing condition’ that leads to the failure, it seems reasonable to consider how the 
coveted ‘error probability’ can be determined directly from a characterisation of the context. In the 
Cognitive Reliability and Error Analysis Method this condition is described in terms of the degree of 
control that an operator or a team has over the situation. In accordance with the principles of cognitive 
systems engineering, human performance is the outcome of the purposive use of competence adjusted 
to the specific working conditions, rather than of pre-determined sequences of response to given 
events. In CREAM, a distinction is made between the following four characteristic control modes. In 
the basic predictive method, CREAM assumes that control mode is determined by a set of factors 
called Common Performance Conditions (CPC). It is further assumed that the CPCs can be used to 
provide a concise description of how performance is affected by the context. The current version of 
CREAM comprises the following 10 CPCS: ‘adequacy of organisation’, ‘working conditions’, 
‘adequacy of MMI and operational support’, ‘availability of procedures/plans’, ‘number of 
simultaneous goals’, ‘available time’, ‘time of day (circadian rhythm)’, ‘adequacy of training and 
experience’, ‘crew collaboration quality’, and ‘communication efficiency’. Unlike the traditional 
Performance Shaping Factors, the CPCs are not assumed to be independent of one another. On the 
contrary, the dependency is an important feature of any real context and must be accounted for to 
determine the effect of the CPCS. This is done by means of a specific model of how the CPCs affect 
each other [14]. 

HUMAN COGNITIVE RELIABILITY METHOD 
Even if it is a first-generation method for study of human reliability and it could seem less suitable 
than methods as CREAM or ATHEANA, HCR method, due to its algorithmic simplicity and 
flexibility to joint deterministic and probabilistic features of risk analysis, appears really sound to 
apply with simplified DETA. 
The case study provided a demonstration of the usefulness and efficiency of combining the HCR 
model and the human event tree method and represents a trial to extend the human reliability 
quantification method to mitigating measures as required in [15]. 
In order to integrate in dynamic ETA assessment of human error probability, we chose, among  
numerous models worked out in last years, a simple method called HCR ( Human cognitive 
Reliability),  developed to quantify HEP (Human Error Probability) related to cognitive response of C 
type and specific for task analysis where available time T is the main constraint and whose right 
implementation is cognitive based. Both aspects, as seen, make this method complementary, from the 
point of view of human reliability analysis, to dynamic event tree developed for plant safety. 

This method allows to quantify every human interaction (HI) depending upon the time, provided 
reliability of response in time by operator, and it is made up of three particular TRCs (Time Reliability 
Curves) to consider human cognitive attitude in response (skill, rule and knowledge-based). 

HCR derives from TRC applied to a range of HIs with different types of cognitive behaviours (e.g. 
S/R/K-based in accord to Rasmussen), various mean responses in time (T1/2) of the team, stated PSFs 
(for example team experience, stress, man-machine interface) which we consider to affect mainly T1/2. 

This method provides probability of no response in time T, Pe(t), due to an exceedingly slow 
implementation of the task, and does not include trouble perception error or measure choice error, 
performable through event tree.. 

TRCs are used to quantify HEP related to cognitive response of C type of HI. Time reliability is 
calculated as follows: 

 

Where Tr and Tw represent respectively time for team response and range of available time for a 
specific HI, while fTw(t) e FTr(t) represent density function and CDF of probability for stochastic 
variables of our parameters. 
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Term [ 1-FTr(t)] , which is complementary of CDF of time for team response, is usually known as 
TRC. As example, if we assume a log-norm distribution for Tr with  parameter   μ=ln T1/2 , with T1/2 
mean time for team response, fixed σ and the constant Tw, then: 

HEP=Pr(Non response in Tw)=Pr(Tr>Tw)=1-φ[Ln(Tw/T1/2)/σ] 

Where φ(.) is normal standard CDF. We can observe that HEP , deriving from a TRC for a HI with a 
fairly big range of time, should be very little. In these cases there are always other human error not 
time depending, as those ones in executing action. 

The method develops along following steps: 

- task classification; 

- determination of nominal value of mean time T*
1/2; 

- Conversion of T*
1/2 by PSF (performance shaping factor), so obtaining T1/2; 

- Definition of available time T; 

- Application of HCR method to get Pe(T). 

In first point, set by event tree (for instance HRA) the level of decomposition of time depending tasks, 
classification depending on type of involved cognitive process is required.  

After, we determine nominal average time T*
1/2 (by operative experience, simulators, expert 

judgement,...) that represents value of available time corresponding exactly to 50% of probability of 
failure in carrying out a fixed task, without considering case specificity, evaluated by three PSFs: 
training, stress, quality of control room and of plant. Influence of PSFs on T1/2 is expressed by 
following relation: 

T1/2(corrected for PSFs)=T1/2(Nominal PSFs)*Π(1+PSFj)    j=1,2,3 

 
Table 2  PSFs of HCR model and values of corrective factors 

Performance Shaping Factor PSFJ 

Operator experience PSF1 
- Expert, well trained -0.22 
- Average knowledge training 0.00 
- Novice, minimum training 0.44 
Stress PSF2 
- Situation of grave emergency 0.44 
- Situation of potential emergency 0.28 
- Active, no emergency 0.00 
- Low activity, low vigilance -0.28 
Quality of human-machine interface PSF3 
- Excellent -0.22 
- Good 0.00 
- Fair 0.44 
- Poor 0.78 
- Extremely poor 0.92 

 
We observe again that value of PSFi is tabled, while, in each situation, available time T for operators 
to carry out intervention before a dramatic unwished change of system state must be determined, in 



 

accord to experience or expert judgement. Therefore, the model is mathematically represented by three 
Weibull distributions, one for each type of cognitive behaviour, where t is available time and γi, ηi  and 
βi are parameters for the three correlations; they are meanly determined through small-scale test about 
three types of behaviour S/R/K. 

 

Table 3  Parameters of model HCR 
Cognitive Behaviour Type βI γI ηI 

Skill based 1.2 0.7 0.407 
Rule based 0.9 0.6 0.601 

Knowledge based 0.8 0.5 0.791 
 
Now, it will be sufficient to insert T in Weibull expression  
 
 

 
 

to find desired probability of not response. 

APPLICATION TO FIRE SCENARIOS OF DYNAMIC EVENT TREE ANALYSIS 
It could be very interesting to deal through dynamic ETA the study of risk related to fire, and for its 
relevance, and for its features particularly suitable to uncertainty assessment with proposed method. 
Fire is characterized by fairly short time (in the order of hours) respect to maintenance time of 
involved components or respect to mission time of the system and by considerable changing of 
process variables (for example temperature). It could yield overcoming of good operating range for 
involved system. 

Of course, failure rates used in calculation are those related to maintenance and aging at the moment 
of accident, considering a short transient  respect to mission time of the entire system (condition 
required to apply this method). 

In these scenarios, it’s dramatically involved human factor as well as communication technology used 
in buildings or facilities; time is critical in this case, because delayed intervention of these protection 
devices compared with fire evolution means the failures of subsequent system, since, after ignition, it 
is not possible to extinguish fire. This trouble strictly depends on system and on its dynamics as well 
as human factor, in the presence of automatic detectors too. 

Another system related to human factor is the extinguishing plant: in fact, intervention called by 
control room could be faster (and could depend upon quickness of former events) than automatic one, 
that actives the system only when threshold value is exceeded. In this case we consider direct 
dependence on temperature; other quantities could be used, linked, anyway, to chosen variables, 
through deterministic evolution of accident transient. 

In the aim to calculate probability of non intervention in time T, Pe(t) we can apply HCR method. 

It should be observed mutual influence between Pe(t) and time operating range of systems Δt*. If 
configuration of safety devices considers, immediately after signalling system, the intervention of 
operator, his delay in actuating procedures has repercussions on starting 
time of devices, narrowing operating time Δt* and, therefore, global reliability. On the other side, 
when operator must act after insertion of automatic devices, possible failure of one or more 
components of system affects response time through increasing PSF2 (stress), determined by setting of 
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emergency situation. Transient time Δt derives from fire standard curve, imposing as superior limit an 
appropriate time margin as regards to beginning of Flash Over. For it could be an extremely quick 
dynamic (in the order of few minutes), we need to minimize probability of non response in time by 
operators, limiting to acceptable values excursion of PSF2 and reducing in this way, corrected mean 
time. 
Insert of human factor in dynamic event tree by assessing mutual influence between time of operator 
intervention and response of safety devices, allows matching deterministic evolution of fire with 
typically probabilistic nature of human behaviour through a complete and easy mathematic formalism. 

Referring, for example, to following tables related to fire standard curves in railway and road tunnels 
processed in Germany by RABT and in the Netherlands by RWS, it is remarkable that limit 
temperature of 800°C, over which Flash Over zone begins, is reached in this kind of scenarios in a 
time of the order of three minutes. Comparing this period with sequence of safety systems, including 
human actions, explained in event tree below, response in time by operator appears critical in order to 
stop accident evolution. 

 

Tables 4 and 5: values of fire standard curves 
 

RABT-ZTV (train) 
Time (minutes)  Temperature (°C)  
0 15 
5 1200 
60 1200 
170 15 
RABT-ZTV (car) 
Time (minutes)  Temperature (°C)  
0 15 
5 1200 
30 1200 
140 15 

 
 
First human intervention, i.e. immediate signalling to control room and possible manual extinguish not 
only by trained operators but also by common people aware of fire development, involve probability 
of delay in response, depending dramatically upon personal skill to decide and then, after all, upon 
cognitive processes (PSF1). 
Second kind of human intervention in event tree is activation of systems with start controlled by 
operators in control room. In this case, as seen, is fundamental available time for operators after 
intervention (maybe failed) of former systems. It involves rise of stress factor (PSF2) that could 
invalidate readiness of expected procedures. 

RWS, RijksWaterStaat 
Time (minutes)  Temperature (°C)  
0 20 
3 890 
5 1140 
10 1200 
30 1300 
60 1350 
90 1300 
120 1200 
180 1200 
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Finally, it is important that man-activated systems are available and easy to use. These features are 
involved by PSF3. 

First source of uncertainty  related to application of DETA with HCR derives from parameters of fire 
curve that we are considering. In fact, for hydrocarbon curves, there are only 3 minutes to avoid 
entering Flash Over zone, while for cellulosic ISO 834 curve there is available time of around 30 
minutes. This reduction has repercussions on parameters Tsw, representing, in HCR method, available 
time for operators to carry out a particular action, and ΔT/ΔT*, representing correction factor of 
components reliability during accidental transient. 
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Figure 2 Fire Curves 

Hence, we consider parameters of HCR methods and DETA. Imaging that we are in a situation 
characterized by well trained operators and excellent human-machine interface (e.g. fire alarms), we 
can set PSF1 equal to –0.22 as well as PSF3. 

If we assume the values 

T1/2=45 sec 

Tw=6 min for slow transient    and    Tw=2 min for fast transient    (where we are supposing man as a 
part of safety chain) 

we obtain following results  

(a) Tw/T1/2*=9.52   with PSF2=0.28   and  Tw/T1/2*=8   with PSF2=0.44 for slow transient and 

(b) Tw/T1/2*=3.21   with PSF2=0.28   and  Tw/T1/2*=2.7   with PSF2=0.44 for  fast transient 

 

if T1/2=30 sec we achieve respectively 

(c) Tw/T1/2*=14.29   with PSF2=0.28   and  Tw/T1/2*=12   with PSF2=0.44 in slow transient and 

(d) Tw/T1/2*=4.76   with PSF2=0.28   and  Tw/T1/2*=4   with PSF2=0.44 in fast transient 

 

finally, for T1/2=1 min 

(e) Tw/T1/2*=7.14   with PSF2=0.28   and  Tw/T1/2*=6   with PSF2=0.44 in slow transient and 

(f) Tw/T1/2*=2.38   with PSF2=0.28   and  Tw/T1/2*=2   with PSF2=0.44 in fast transient 

 

When we insert these numbers in Weibull CDF with parameters β=0.8; γI=0.5; η=0.791 (knowledge 
based model) we can find probability of failures as shown in figure 3 

 



 

 
Figure 3 Probability of failure (operator) 

We can observe that in slow transient uncertainty on basic parameter T1/2 does not affect significantly 
human reliability for we remain fairly below P=0.1 also for PSF2=0.44. Moreover, it is very unlikely 
to achieve the higher value of PSF2 in such a situation. 
Situation is very different when we consider fast transient. In this case, also assuming  T1/2=30 sec, 
effect of stress (PSF2=0.44) is sufficient to pass from P=0.02 to P=0.03 probability. 
Besides, if we suppose T1/2=45 sec or, in worst case, 1 minute, we can reach a value of nearly 0.2 for 
probability, considering stress factor. 
In order to assess system reliability during transient we can apply DETA, focusing our attention on 
influence of ΔT*/ΔT, as defined in paragraph about dynamic event tree, on failure probability as 
shown in figure 4 

 
Figure 4 Probability of failure (system) 



 

It can be remarked how, for decreasing ΔT*/ΔT, trend becomes asymptotic. It means that, in fast 
transient, effect of decreasing available time on system reliability is less dramatic than on human 
reliability in accord to HCR method. It suggests that between following configurations: 

(a) man automatic system 

(b) automatic system man 

the first one could be preferable. In fact, in configuration (b) the operator, with available time fixed by 
sequence of intervention of preceding automatic systems, is the ultimate barrier before accidental 
dynamic becomes irreversible and he could be affected by related stress. Since time response curve 
shows an exponential rise of failure probability when ratio Tsw/T1/2 gets near zero, this factor could 
have serious consequences. 

In configuration (a) operator, before automatic systems, has no fixed limit to act though, of course, his 
delay has repercussions on starting time of automatic systems, shortening their good-working time 
range and, consequently, global reliability. 

CONCLUSIONS 

Results show that, in critical conditions during accidental transient, time resilience of automatic 
systems appears larger than operator’s one, suggesting therefore choice of configuration (a) rather than 
configuration (b). 

Uncertainty deriving from assessing of human reliability in dynamic event tree analysis affects both 
model and parameters of HCR and DETA. In particular, it should be important to have reference 
values of T1/2 when we apply HCR method to fire scenarios, as already done in NPP. Furthermore, in 
order to carry on study about man-system integration, a large number of dynamic response curves of 
system components should be examined. Best Performance Shaping Factors of experience and quality 
of interfaces have been considered, but we need to evaluate them for each special case we are going to 
study. Finally, qualitative results achieved by comparison of response curves for human and 
components reliability can represent a basis to deepen quantitative features of delay propagation in 
dynamic event tree. 
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